The Thermal Conductivity and Viscosity of Non-Polar Hybrid CuO Nanofluid (CuO+ DEA + Cyclohexane) (CuO + DEA + 1-4 Dioxane)

2019 ◽  
Vol 17 (12) ◽  
pp. 965-967
Author(s):  
B. Rohini ◽  
A. Kingson Solomon Jeevaraj

Nano fluid is the new class of engineering fluid for the heat transfer applications. Copper Oxide (CuO) nano particles were dispersed in the binary fluid (Cyclohexane + DEA) and (1-4 dioxane + DEA) then prepared non-polar hybrid CuO nano fluid. Thermal conductivity (K ) and viscosity (η) of non-polar hybrid CuO nanofluid measured for very low concentration from 0.01 M to 0.06 M and various temperatures ranging from 298 K to 318 K. The transient hotwire method is used for the thermal conductivity measurements and viscometer is used for the viscosity measurement. As the concentration increases K decreases but it increases with the increase of temperature. η increases with the increase of concentration as well as with temperature. From the results the spectacular heat transfer enhancement occurred in the hybrid CuO nanofluid compared to the binary mixtures. The percentage increment of thermal conductivity of non-polar hybrid CuO nano fluid is of 15% to 20% and the viscosity increment is of from 18% to 25%.

This paper summary of heat transfer characteristics and nano fluids mechanics by using single phase convection techniques. Gas having less thermal conductivity compare than the liquids having high thermal conductivity. The heat transfer enhancement improved by using nano fluids Al2O3 compared with base water. The heat transfer enhancement was analysed with plain tube and twisted tape inserts with nano fluids. The experimental investigation was analysed and reading was taken to improve the heat transfer and friction flow characteristics. The Reynolds number varies from different ranges with plain water and Nano fluids. The experimental record of nano fluid heat transfer value was increased with 2.89 percentage compare with the experimental record of plain water. The nano fluids has more concentration than the plain water.


2016 ◽  
Vol 22 (2) ◽  
pp. 211-225
Author(s):  
M. Barahoei ◽  
Zeinolabedini Hezave ◽  
S. Sabbaghi ◽  
Sh. Ayatollahi

Since the oil reservoirs are limited and energy demand is increasing, seeking for high efficient EOR processes or enhancing the efficiency of current proposed EOR methods for producing trapped oil from reservoirs are highly investigated. As a way out, it is possible to couple the EOR and nanotechnology to utilize the efficiency of both methods together. Regarding this possibility, in the current study, in the first stage of investigation stable and uniform water-based solution of nano size particles of copper oxide with different concentrations (0.01-0.05 M) were prepared and then injected into the core samples. In the first stage, the effects of different surfactants respect to their concentrations was investigated. Then, different scenarios of using nano-fluid as a thermal conductivity modifier were examined. The obtained results clearly demonstrate that changing concentration of nano particles of copper oxide from 0.01 M to 0.05 M is able to enhance the thermal conductivity of rocks from 27 % to 48 % compared with the thermal conductivity of dry core.


Author(s):  
Nikheel Joshi

A heat exchanger is a engineering device used for efficient heat transfer from one fluid to another at different temperatures and thermal in contact. Thermal properties of fluids play a significant role in various cooling and heating uses. Traditional fluids are of low thermal conductivity, so researchers are tried to enhance thermal conductivity by adding nano-particles. The model of double pipe heat exchanger was develop by using ANSYS workbench. Al2O3 mixed with water as a base fluid for analyzed their performance in double pipe heat exchanger. Al2O3 is a excellent material for heat transfer enhancement because, it has better physical as well as chemical properties. In this paper, we performed CFD analysis on double pipe heat exchanger using ANSYS FLUENT software by varying the concentrations of nano-particle (0.5%, 1%, 2%) in water. CFD analysis on double pipe heat exchanger by using Al2O3/water (nano-fluid) as cold fluid and water as a hot fluid. It is observed that nano-fluid with 2% concentration having more overall heat transfer coefficient.


RSC Advances ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 1791-1802 ◽  
Author(s):  
Abdallah D. Manasrah ◽  
Ismail W. Almanassra ◽  
Nedal N. Marei ◽  
Usamah A. Al-Mubaiyedh ◽  
Tahar Laoui ◽  
...  

Over the last few years, nanoparticles have been used as thermal enhancement agents in many heat transfer based fluids to improve the thermal conductivity of the fluids.


1996 ◽  
Vol 457 ◽  
Author(s):  
J. A. Eastman ◽  
U. S. Choi ◽  
S. Li ◽  
L. J. Thompson ◽  
S. Lee

ABSTRACTLow thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids required in many industrial applications. To overcome this limitation, a new class of heat transfer fluids is being developed by suspending nanocry stalline particles in liquids such as water or oil. The resulting “nanofluids” possess extremely high thermal conductivities compared to the liquids without dispersed nanocrystalline particles. For example, 5 volume % of nanocrystalline copper oxide particles suspended in water results in an improvement in thermal conductivity of almost 60% compared to water without nanoparticles. Excellent suspension properties are also observed, with no significant settling of nanocrystalline oxide particles occurring in stationary fluids over time periods longer than several days. Direct evaporation of Cu nano-particles into pump oil results in similar improvements in thermal conductivity compared to oxide-in-water systems, but importantly, requires far smaller concentrations of dispersed nanocrystalline powder.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (17) ◽  
pp. 3419-3426 ◽  
Author(s):  
Pyshar Yi ◽  
Robiatun A. Awang ◽  
Wayne S. T. Rowe ◽  
Kourosh Kalantar-zadeh ◽  
Khashayar Khoshmanesh

This work introduces a method to enhance the thermal conductivity of PDMS microfluidic platforms through the use of PDMS/Al2O3 nanocomposites.


Author(s):  
Xuan Wu ◽  
Ranganathan Kumar ◽  
Parveen Sachdeva

Nanofluids that consist of nanometer sized particles and fibers dispersed in base liquids have shown the potential to enhance the heat transfer performance. Although three features of nanofluids including anomalously high thermal conductivities at very low nanoparticle concentrations, strongly temperature dependent thermal conductivity and significant increases in critical heat flux have been studied widely, and layering of liquid molecules at the particle-liquid interface, ballistic nature of heat transport in nanoparticles, and nanoparticle clustering are considered as the possible causations responsible for such kind of heat transfer enhancement, few research work from atomic-scale has been done to verify or explain those fascinating features of nanofluids. In this paper, a molecular dynamic model, which incorporates the atomic interactions for silica by BKS potential with a SPC/E model for water, has been established. To ensure the authenticity of our model, the position of each atom in the nanoparticle is derived by the crystallographic method. The interfacial interactions between the nanoparticle and water are simplified as the sum of interaction between many ions. Due to the electrostatic interaction, the ions on the nanoparticle’s surface can attract a certain number of water molecules, therefore, the effect of interaction between the nanoparticle and water on heat transfer enhancement in nanofluids is studied. By using Green-Kubo equations which set a bridge between thermal conductivity and time autocorrelation function of the heat current, a model which may derive thermal conductivity of dilute nanofluids that consist of silica nanoparticles and pure water is built. Several simulation results have been provided which can reveal the possible mechanism of heat enhancement in nanofluids.


Sign in / Sign up

Export Citation Format

Share Document