The Proteasome Inhibitor Bortezomib Induces Apoptosis in Human Retinoblastoma Cell Lines In Vitro

2007 ◽  
Vol 48 (10) ◽  
pp. 4706 ◽  
Author(s):  
Vassiliki Poulaki ◽  
Constantine S. Mitsiades ◽  
Vassiliki Kotoula ◽  
Joseph Negri ◽  
Douglas McMillin ◽  
...  
Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2797-2805 ◽  
Author(s):  
Feng-Ting Liu ◽  
Samir G. Agrawal ◽  
John G. Gribben ◽  
Hongtao Ye ◽  
Ming-Qing Du ◽  
...  

Proapoptotic Bcl-2 family member Bax is a crucial protein in the induction of apoptosis, and its activation is required for this process. Here we report that Bax is a short-lived protein in malignant B cells and Bax protein levels decreased rapidly when protein synthesis was blocked. Malignant B cells were relatively resistant to tumor necrosis factor–related apoptosis inducing ligand (TRAIL)–induced apoptosis, and this correlated with low basal Bax protein levels. Furthermore, during treatment with TRAIL, the resistant cell lines showed prominent Bax degradation activity. This degradation activity was localized to mitochondrial Bax and could be prevented by truncated Bid, a BH3-only protein; in contrast, cytosolic Bax was relatively stable. The proteasome inhibitor bortezomib is a potent drug in inducing apoptosis in vitro in malignant B-cell lines and primary chronic lymphocytic leukemic (CLL) cells. In CLL cells, bortezomib induced Bax accumulation, translocation to mitochondria, conformational change, and oligomerization. Accumulation and stabilization of Bax protein by bortezomib-sensitized malignant B cells to TRAIL-induced apoptosis. This study reveals that Bax instability confers resistance to TRAIL, which can be reversed by Bax stabilization with a proteasome inhibitor.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lena Andersch ◽  
Josefine Radke ◽  
Anika Klaus ◽  
Silke Schwiebert ◽  
Annika Winkler ◽  
...  

Abstract Background Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. Methods CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. Results All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. Conclusion Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.


2007 ◽  
Vol 48 (6) ◽  
pp. 2775 ◽  
Author(s):  
Miguel Mun~oz ◽  
Marisa Rosso ◽  
Rafael Coven~as ◽  
Ignacio Montero ◽  
Miguel Angel Gonza´lez-Moles ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrew Morin ◽  
Caroline Soane ◽  
Angela Pierce ◽  
Bridget Sanford ◽  
Kenneth L Jones ◽  
...  

Abstract Background Atypical teratoid/thabdoid tumor (AT/RT) remains a difficult-to-treat tumor with a 5-year overall survival rate of 15%–45%. Proteasome inhibition has recently been opened as an avenue for cancer treatment with the FDA approval of bortezomib (BTZ) in 2003 and carfilzomib (CFZ) in 2012. The aim of this study was to identify and characterize a pre-approved targeted therapy with potential for clinical trials in AT/RT. Methods We performed a drug screen using a panel of 134 FDA-approved drugs in 3 AT/RT cell lines. Follow-on in vitro studies used 6 cell lines and patient-derived short-term cultures to characterize selected drug interactions with AT/RT. In vivo efficacy was evaluated using patient derived xenografts in an intracranial murine model. Results BTZ and CFZ are highly effective in vitro, producing some of the strongest growth-inhibition responses of the evaluated 134-drug panel. Marizomib (MRZ), a proteasome inhibitor known to pass the blood–brain barrier (BBB), also strongly inhibits AT/RT proteasomes and generates rapid cell death at clinically achievable doses in established cell lines and freshly patient-derived tumor lines. MRZ also significantly extends survival in an intracranial mouse model of AT/RT. Conclusions MRZ is a newer proteasome inhibitor that has been shown to cross the BBB and is already in phase II clinical trials for adult high-grade glioma (NCT NCT02330562 and NCT02903069). MRZ strongly inhibits AT/RT cell growth both in vitro and in vivo via a moderately well-characterized mechanism and has direct translational potential for patients with AT/RT.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163025 ◽  
Author(s):  
Jan Große-Kreul ◽  
Maike Busch ◽  
Claudia Winter ◽  
Stefanie Pikos ◽  
Harald Stephan ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3014-3014
Author(s):  
Giada Bianchi ◽  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
S. Vincent Rajkumar ◽  
...  

Abstract Abstract 3014 Background: Proteasome inhibitors have proven particularly effective in treatment of multiple myeloma, the second most frequent hematologic malignancy in the western world. Bortezomib, the first in class proteasome inhibitor in clinical use, was first approved in 2003 via fast FDA track, given the remarkable activity shown during phase II clinical trials. Nevertheless, more than 50% of multiple myeloma patients did not respond to single agent bortezomib when administered as second line agent. Moreover, bortezomib is only available for intravenous administration, representing a cumbersome therapy for patients, and its use is limited by significant toxicities (especially peripheral neuropathy). MLN9708 (Millennium Pharmaceuticals, Inc.), an investigational orally available, small molecule, is a potent, specific and reversible inhibitor of the 20S proteasome. It is currently under clinical investigation for the treatment of hematologic and non-hematologic malignancies. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form, and MLN2238 was used for all of the preclinical studies reported here. In vitro biochemistry studies have shown that MLN2238 has a faster dissociation rate from the proteasome compared to bortezomib, and in vivo studies of MLN2238 have shown antitumor activity in a broader range of tumor xenografts when compared to bortezomib. Given these encouraging preclinical results, we set to investigate the anti-myeloma activity of MLN2238 in vitro. Results: MLN2238 proved to have anti-proliferative and pro-apoptotic activity against a broad range of MM cell lines with EC50 at 24 hours ranging between 10 and 50 nM, even in relatively resistant MM cell lines (OPM2, DOX6, RPMI, etc.). In MM.1S cells, induction of apoptosis was time and dose dependent and related to activation of both caspase 8 and 9. When compared to MM.1S treated for 24 hours with EC50 dose of bortezomib, treatment with EC50 dose of MLN2238 resulted in the same extent of caspases cleavage occurring at an earlier time point (8-12 hours), possibly suggesting more rapid onset and/or irreversibility of apoptosis in cells treated with MLN2238. Treatment with MLN2238 was associated with early, but persistent induction of endoplasmic reticulum (ER) stress with BiP being induced 2–4 hours after treatment with EC50 dose and gradually increasing over time. While bortezomib has been associated with early induction and late decrease in proteins involved in ER stress, MLN2238 appears to induce a persistent rise in these factors, suggesting either more sustained proteasome blockade with stabilization of proteasome substrates or de-novo induction of unfolded protein response (UPR) genes. MLN2238 also proved effective in reducing phosphorylation of ERK1-2 with no overall alteration in the total ERK level, thus accounting for the observed reduction in proliferation upon treatment. Preliminary data indicate potential for additive and synergistic combination with widely used drugs, including doxorubicin and dexamethasone. Conclusion: While further clinical data are needed to establish the effectiveness of MLN2238 in the treatment of multiple myeloma, these preliminary nonclinical data, together with the favorable biochemical and pharmacokinetic properties, including oral bioavailability, make the investigational agent MLN9708 an appealing candidate for treatment of multiple myeloma. Further in vitro data could help establish whether a difference in the apoptotic mechanisms exist between MLN2238 and other proteasome inhibitors, primarily bortezomib, and could also help inform combination treatment approaches aimed at increasing effectiveness, overcoming bortezomib resistance and decreasing toxicity. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5725-5725
Author(s):  
Meirong Zang ◽  
Lanting Liu ◽  
Xin Li ◽  
Wei Li ◽  
Ulrike Kuckelkorn ◽  
...  

Abstract Background: Although the first generation of proteasome inhibitor bortezomib is very effective, the development of resistance limits it long-term utility. In this study, we explored the efficiency and molecular mechanisms of the novel, irreversible proteasome inhibitor BSc2118, particularly, the reversal of bortezomib resistance. Materials and Methods: Human MM cell lines (MM.1S, MM.1R, RPMI-8226, U266, NCI-H929) were treated with BSc2118 at various concentrations for 48h, and assessment for cell viability by CCK-8 assay. MM.1S and MM.1R cells were treated with BSc2118 for 24 hours, and cell cycle and apoptosis analysis were conducted by flow cytometry. Associated molecules were detected by qRT-PCR and western blot. Chymotrypsin-like proteasome activity assay was performed by using the 20S proteasome assay kit. Ubiquitinated proteins were isolated and determined with ubiquitin enrichment kit. Results: Our results revealed that treatment of MM cell lines with BSc2118 inhibits the chymotrypsin-like proteasome activity and induces accumulation of ubiquitinated proteins. BSc2118 inhibits MM cell growth and induces MM apoptosis via induction of G2/M phase arrest, activation of cleaved caspase-3, caspase-8 and caspase-9 and PARP, increasing p53, p21 and E2F1, and inhibition of autophagy in MM.1S, MM.1R and RPMI-8226 cell lines. In addition, BSc2118 dramatically inhibits cytokines mRNA, such as IL-6, VEGF and bFGF in both myeloma cells line and primary bone marrow stromal cells from myeloma patients. More importantly, BSc2118 could overcome bortezomib resistance in vitro by using primary CD138 positive plasma cells from bortezomib-resistant myeloma patients and bortezomib resistance cell line ANBL-6 (ANBL-6.BR), most likely as the consequence of inhibition of autophagy flux which is responsible for bortezomib resistance. Conclusion: Our study revealed BSc2118, a novel irreversible proteasome inhibitor, exerts anti-MM effect, mainly through activation of caspase pathway and inhibition of basal autophagy. It is of great importance that BSc2118 could overcome bortezomib resistance via inhibition of autophagy flux. A head to head of BSc2118 versus Bortezomib is performing in human plasmacytoma xenograft tumor model to evaluate drug safety, anti-tumor efficiency, in particular, reversal of bortezomib resistance. Our preclinical study supports clinical evaluation of BSc2118, particularly, overcomes bortezomib resistance, as a potential MM therapy. Disclosures No relevant conflicts of interest to declare.


Author(s):  
R.F. Turchiello ◽  
C.S. Oliveira ◽  
A.U. Fernandes ◽  
S.L. Gómez ◽  
M.S. Baptista

2009 ◽  
Vol 50 (9) ◽  
pp. 4072 ◽  
Author(s):  
Vassiliki Poulaki ◽  
Constantine S. Mitsiades ◽  
Vassiliki Kotoula ◽  
Joseph Negri ◽  
Ciaran McMullan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document