scholarly journals Proteasome inhibition as a therapeutic approach in atypical teratoid/rhabdoid tumors

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrew Morin ◽  
Caroline Soane ◽  
Angela Pierce ◽  
Bridget Sanford ◽  
Kenneth L Jones ◽  
...  

Abstract Background Atypical teratoid/thabdoid tumor (AT/RT) remains a difficult-to-treat tumor with a 5-year overall survival rate of 15%–45%. Proteasome inhibition has recently been opened as an avenue for cancer treatment with the FDA approval of bortezomib (BTZ) in 2003 and carfilzomib (CFZ) in 2012. The aim of this study was to identify and characterize a pre-approved targeted therapy with potential for clinical trials in AT/RT. Methods We performed a drug screen using a panel of 134 FDA-approved drugs in 3 AT/RT cell lines. Follow-on in vitro studies used 6 cell lines and patient-derived short-term cultures to characterize selected drug interactions with AT/RT. In vivo efficacy was evaluated using patient derived xenografts in an intracranial murine model. Results BTZ and CFZ are highly effective in vitro, producing some of the strongest growth-inhibition responses of the evaluated 134-drug panel. Marizomib (MRZ), a proteasome inhibitor known to pass the blood–brain barrier (BBB), also strongly inhibits AT/RT proteasomes and generates rapid cell death at clinically achievable doses in established cell lines and freshly patient-derived tumor lines. MRZ also significantly extends survival in an intracranial mouse model of AT/RT. Conclusions MRZ is a newer proteasome inhibitor that has been shown to cross the BBB and is already in phase II clinical trials for adult high-grade glioma (NCT NCT02330562 and NCT02903069). MRZ strongly inhibits AT/RT cell growth both in vitro and in vivo via a moderately well-characterized mechanism and has direct translational potential for patients with AT/RT.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1821-1821
Author(s):  
Deepika Sharma Das ◽  
Arghya Ray ◽  
Yan Song ◽  
Paul Richardson ◽  
Mohit Trikha ◽  
...  

Abstract Introduction Proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity and drug resistance. A novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action, and effects on proteasomal activities (Chauhan et al., Cancer Cell 2005, 8:407-419). Pomalidomide is an analogue of thalidomide with potent immunomodulatory activity. Based on increased progression-free survival, pomalidomide has been approved by the FDA for the treatment of patients with RRMM who have received at least two prior therapies, including lenalidomide and bortezomib, and who showed disease progression on or within 60 days of completion of the most recent therapy. Here we utilized in vitro and in vivo models of MM to examine the anti-MM activity of combined marizomib and pomalidomide. Animal model studies examined the efficacy of marizomib (PO) using both single weekly and twice weekly schedule either alone or together with pomalidomide (PO). Methods Cell viability, and apoptosis were performed using WST/MTT, and Annexin V, respectively. Synergistic anti-MM activity was determined with CalcuSyn software program. Proteasome activity was measured, as in prior study (Chauhan et al., Cancer Cell 2005). MM.1S-tumor-bearing mice were treated with vehicle control, marizomib (PO) pomalidomide (PO), or marizomib plus pomalidomide at the indicated doses for 21 days on a twice-weekly or once weekly schedule for marizomib and 4 consecutive days weekly for pomalidomide. Statistical significance was determined using a Student's t test. Pomalidomide was purchased from Selleck chemicals; and marizomib was obtained from Triphase Accelerator, USA. Results MM cell lines (MM.1R, MM.1S, INA-6, RPMI-8226, LR5, Dox-40, bortezomib-sensitive ANBL6.WT, and bortezomib-resistant ANBL6.BR) and primary patient MM cells were pretreated with pomalidomide for 24h; marizomib was then added for an additional 24h, followed by measurement of cell viability. A significant decrease in viability of all cell lines was observed in response to treatment with combined low doses of marizomib and pomalidomide vs. either agent alone. Isobologram analysis confirmed the synergistic anti-MM activity of these agents (CI < 1.0). The cytotoxicity of combination therapy was observed in MM cell lines sensitive and resistant to novel therapies, and in p53-null ARP-1 MM cells. A significant decrease in cell viability of all patient MM cells was noted after combination therapy as compared to either compound alone (p < 0.05 for all patients). In contrast, combined low doses of marizomib plus pomalidomide did not significantly affect the viability of normal PBMCs, suggesting a favorable therapeutic index for this combination regimen. Tumor cells from 5 of 7 patients were obtained from patients whose disease was progressing while on bortezomib, dex, and lenalidomide therapies. Marizomib plus pomalidomide-induced apoptosis was associated with: 1) activation of caspase-8, caspase-9, caspase-3, and PARP cleavage; 2) downregulation of cereblon (CRBN), IRF4, c-Myc, and Mcl-1; and 3) suppression of CT-L, C-L, and T-L proteasome activities. CRBN-siRNA attenuated marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibited the migration of MM cells and tumor-associated angiogenesis, and overcame cytoprotective effects of BM milieu. Human MM xenograft model study showed that combined low doses of marizomib (twice weekly; PO)) and pomalidomide (4 consecutive days weekly; PO) for 3 weeks were well tolerated, inhibited tumor growth, and prolonged survival. Importantly, combination of marizomib on once weekly (PO) schedule with pomalidomide (PO) was active and led to prolongation of survival. Finally, inhibition of CT-L (63%), T-L (40%) and C-L (29%) proteasome activity was observed in tumors from marizomib plus pomalidomide-treated mice vs. untreated mice. Conclusion Our preclinical data from in vitro studies and in vivo MM xenograftmodels demonstrate that oral marizomib plus pomalidomide trigger synergistic anti-MM activity, enhance proteasome inhibition, and overcome drug resistance. These studies support the continuation of clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM. Disclosures Trikha: Triphase Accelerator Corporation: Employment. Chauhan:Stemline Therapeutics: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4454-4454
Author(s):  
Eugen Dhimolea ◽  
Richard W.J. Groen ◽  
Catriona A. Hayes ◽  
Jana Jakubikova ◽  
Bariteau Megan ◽  
...  

Extensive preclinical studies of several groups using tumor cells co-cultured with bone marrow stromal cells (BMSCs) has documented that the potent anti-MM activity of the proteasome inhibitor bortezomib is not suppressed by BMSCs (e.g. primary and immortalized BMSCs). Using our compartment-specific bioluminescence imaging (CS-BLI) assays, we extended these observations to larger panels of MM cell lines. We observed, however, a recurrent pattern that primary CD138+ MM tumor cells from bortezomib-refractory patients recurrently exhibited substantial in vitro response to clinically-achievable concentrations and durations of bortezomib treatment. To simulate this clinicopathological observation, MM.1R-Luc+ cells were injected i.v. in SCID-beige mice and treated with bortezomib (0.5 mg/kg s.c. twice weekly for 5 weeks): diffuse MM tumors initially responded to bortezomib, but eventually became refractory. These in vivo-resistant MM cells were isolated from the mice and were treated in vitro with bortezomib, exhibiteing similar responsinveness to this agent as their isogenic bortezomib-naive MM cells, To further address the possibility that this represents a previously underexplored form of a microenvironment-induced alteration in bortezomib responsiveness, we studied how MM cells respond to pharmacological proteasome inhibition after variable times of co-culture with BMSCs prior to bortezomib exposure. We observed that prolonged tumor-stromal co-culture (48-96hrs) prior to initiation of bortezomib treatment did not affect drug sensitivity for many of the MM cell lines (OPM2, H929, UM9, KMS11, KMS18 and RPMI-8226) tested. Notably, prolonged co-cultures with BMSCs prior to bortezomib treatment enhanced the activity of this agent for other MM cell lines (e.g. OPM1, Dox40, OCI-My5, KMS12BM or KMS18). However, MM.1S and MM.1R cells, when exposed to extended co-cultures with BMSCs prior to initiation of drug exposure, exhibited significant attenuation (2-3 fold increase of IC50 values) of their response to bortezomib in several independent replicate experiments. In support of these in vitro results, heterotypic s.c. xenografts of Luc+ MM.1S cells co-implanted with Luc-negative BMSCs did not show significant reduction in MM tumor growth with bortezomib treatment (0.5 mg/kg s.c. twice weekly for 5 weeks) compared to vehicle-treated controls (p=0.13), as quantified by bioluminescence imaging. In co-cultures with BMSCs, MM.1S and MM.1R cells also exhibited suppression of their response to carfilzomib (the degree of this stroma-induced resistance was more pronounced that in the case of bortezomib for these 2 cell lines). Consistent with these observations, in vivo administration of carfilzomib in the orthotopic model of diffuse bone lesions of MM.1R-Luc+ cells was associated with less pronounced reduction in tumor growth, compared to bortezomib treatment (p<0.03). These results suggest that the stroma-induced attenuation of activity against a subset of MM cells represents a class-effect for this group of therapeutics, despite quantitative differences between different proteasome inhibitors. Mechanistically, we determined a distinct transcriptional signature of stroma-induced transcripts which are overexpressed in refractory myeloma patients with significantly shorter overall survival (p<0.03, log-rank tests) after bortezomib treatment. Our results in vitro and in vivo support the notion that the responses of MM cells to proteasome inhibition can exhibit substantial plasticity depending on the specific microenvironmental context with which these MM cells interact. We also identify prognostically-relevant candidate molecular mediators of stroma-induced resistance to proteasome-inhibitor based therapy in MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3773-3773
Author(s):  
Nina Mohell ◽  
Charlotta Liljebris ◽  
Jessica Alfredsson ◽  
Ylva Lindman ◽  
Maria Uustalu ◽  
...  

Abstract Abstract 3773 Poster Board III-709 Introduction The tumor suppressor protein p53 induces cell cycle arrest and/or apoptosis in response to various forms of cellular stress, through transcriptional regulation of a large number of down stream target genes. p53 is frequently mutated in cancer, and cancer cells carrying defects in the p53 protein are often more resistant to conventional chemotherapy. Thus, restoration of the wild type function to mutant p53 appears to be a new attractive strategy for cancer therapy. APR-246 is a novel small molecule quinuclidinone compound that has been shown to reactivate non-functional p53 and induce apoptosis. Although the exact molecular mechanism remains to be determined, recent results suggest that an active metabolite of APR-246 alkylates thiol groups in the core domain of p53, which promotes correct folding of p53 and induces apoptosis (Lambert et al., Cancer Cell 15, 2009). Currently, APR-246 is in Phase I/IIa clinical trials for hematological malignancies and prostate cancer. In the present abstract results from in vitro, ex vivo and in vivo preclinical studies with APR-246 are presented. Results The lead compound of APR-246, PRIMA-1 (p53 reactivation and induction of massive apoptosis), was originally identified by a cellular screening of the NCI library for low molecular weight compounds (Bykov et al., Nat. Med., 8, 2002). Further development and optimization of PRIMA-1 led to the discovery of the structural analog APR-246 (PRIMA-1MET), with improved drug like and preclinical characteristics. In in vitro experiments APR-246 reduced cell viability (WST-1 assay) in a large number of human cancer cell lines with various p53 status, including several leukemia (CCRF-CEM, CEM/VM-1, KBM3), lymphoma (U-937 GTP, U-937-vcr), and myeloma (RPMI 8226/S, 8226/dox40, 8226/LR5) cell lines, as well as many solid cancer cell lines, including osteosarcoma (SaOS-2, SaOS-2-His273,U-2OS), prostate (PC3, PC3-His175, 22Rv1), breast (BT474, MCF-7, MDA-MB-231), lung (H1299, H1299-His175) and colon cancer (HT-29). In human osteosarcoma cell lines APR-246 reduced cell viability and induced apoptosis (FLICA caspase assay) in a concentration dependent manner being more potent in the p53 mutant (SaOS-2-His273) than in the parental p53 null (SaOS-2) cells. The IC50 values (WST-1 assay) were 14 ± 3 and 27 ± 5 μM, respectively (n=35). In in vivo subcutaneous xenograft studies in SCID (severe combined immunodeficiency) mice APR-246 reduced growth of p53 mutant SaOS-2-His273 cells in a dose-dependent manner, when injected i.v. twice daily with 20 -100 mg/kg (64 – 76% inhibition). An in vivo anticancer effect of APR-246 was also observed in hollow-fiber test with NMRI mice using the acute myeloid leukemia (AML) cell line MV-4-11. An ex vivo cytotoxic effect of APR-246 and/or its lead compound PRIMA-1 has also been shown in primary cells from AML and CLL (chronic lymphocytic leukemia) patients, harbouring both hemizygously deleted p53 as well as normal karyotype (Nahi et al., Br. J. Haematol., 127, 2004; Nahi et al., Br. J. Haematol., 132, 2005; Jonsson-Videsater et al., abstract at this meeting). APR-246 was also tested in a FMCA (fluorometric microculture assay) test using normal healthy lymphocytes (PBMC) and cancer lymphocytes (CLL). It was 4-8 fold more potent in killing cancer cells than normal cells, indicating a favorable therapeutic index. This is in contrast to conventional cytostatics that often show negative ratio in this test. Furthermore, when tested in a well-defined panel of 10 human cancer cell lines consisting of both hematological and solid cancer cell lines, the cytotoxicity profile/activity pattern of APR-246 differed from common chemotherapeutic drugs (correlation coefficient less than 0.4), suggesting a different mechanism of action. Conclusion In relevant in vitro, in vivo and ex vivo cancer models, APR-246 showed unique pharmacological properties in comparison with conventional cytostatics, by being effective also in cancer cells with p53 mutations and by demonstrating tumor specificity. Moreover, in experimental safety/toxicology models required to start clinical trials, APR-246 was non toxic at the predicted therapeutic plasma concentrations. Thus, APR-246 appears to be a promising novel anticancer compound that may specifically target cancer cells in patients with genetic abnormality associated with poor prognosis. Disclosures: Mohell: Aprea AB: Employment. Liljebris:Aprea AB: Employment. Alfredsson:Aprea AB: Employment. Lindman:Aprea AB: Employment. Uustalu:Aprea AB: Employment. Wiman:Aprea AB: Co-founder, shareholder, and member of the board. Uhlin:Aprea AB: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5658-5658
Author(s):  
Mariana Bleker de Oliveira ◽  
Angela Isabel Eugenio ◽  
Veruska Lia Fook Alves ◽  
Daniela Zanatta ◽  
Mihoko Yamamoto ◽  
...  

Abstract Introduction: HSP70 has an integrative role in protein degradation due to the interaction with many pathways, such as ubiquitin proteasome (UPS), unfolded protein response (UPR) and autophagy. In multiple myeloma (MM) HSP70 is overexpressed and helps to prevent proteotoxic stress and cell death caused by overload of unfolded/misfolded proteins produced by tumor cells. Aims: To explore the role of HSP70 inhibition, isolated or in association with proteasome inhibitor, as therapeutic strategy for MM through in vitro and in vivo analyses. Methods: RPMI8226-LUC-PURO and U266-LUC-PURO bioluminescent cell lines were treated with HSP70 inhibitor (VER155008- 50 μM or 80μM) and proteasome inhibitor (bortezomib 100nM) for evaluation of apoptosis induction by flow cytometry using annexin V and propidium iodide. NOD.Cg-rkdcscid Il2rgtm1Wjl/SzJ immunodeficient mice were used for plasmacytoma xenograft model and treated with intravenous VER155008 (40mg/kg) and bortezomib (1mg/kg), immediately after transplant of RPMI8226-LUC-PURO and U266-LUC-PURO bioluminescent cell lines (N=3 for each group, including controls, bortezomib, VER155008, and combination of bortezomib and VER155008). Bioluminescence was measured in IVIS Kinetic (Capiler Life Science) once a day for seven days. Results: Bortezomib used as single treatment was able to induce apoptosis in RPMI8226-LUC-PURO cell line: the best result for in vitro studies RPMI8226-LUC-PURO was 65% of late apoptosis after treatment with bortezomib. On the other hand, U266-LUC-PURO cell line presented higher percentage of apoptosis when treated with bortezomib and VER155008 combination: U266-LUC-PURO cell line presented more than 60% of late apoptosis after VER155008 (80μM) combined with bortezomib, showing that inhibition of HSP70 could overcome U266-LUC-PURO resistance to bortezomib alone. Mice treated with VER155008, alone or in combination with bortezomib, showed complete inhibition of tumor growth (absence of bioluminescence) for both cell lines when compared with control group after one week of treatment (p<0.001, Two-way ANOVA). Therefore, in vivo studies using mice treated with VER155008, alone or in combination with bortezomib, prevented tumor development after one week of treatment, independent of the cell line used in the xenotransplant. Conclusion: Our study shows that HSP70 and proteasome inhibitors combination induced apoptosis in tumor cells in vivo for both MM cell lines. Since HSP70 is overexpressed in MM and connects several signaling pathways that maintain cell survival, such as UPS, UPR and autophagy, it can represent a key role to establish a new approach for the treatment of MM. Financial support: FAPESP 2010/17668-6 and CNPq (155272/2013-6). UNIFESP Ethics Committee (0219/12). Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Monica Benvenuto ◽  
Sara Ciuffa ◽  
Chiara Focaccetti ◽  
Diego Sbardella ◽  
Sara Fazi ◽  
...  

Abstract Head and neck cancer (HNC) has frequently an aggressive course for the development of resistance to standard chemotherapy. Thus, the use of innovative therapeutic drugs is being assessed. Bortezomib is a proteasome inhibitor with strong in vitro and in vivo anticancer effects. In vitro antitumoral activity of Bortezomib was investigated employing human pharynx (FaDu), tongue (SCC-15, CAL-27), salivary gland (A-253) cancer cell lines and a murine cell line (SALTO-5) originated from a salivary gland adenocarcinoma arising in BALB-neuT male mice transgenic for the oncogene neu. Bortezomib in vivo effects in BALB-neuT mice transplanted with murine SALTO-5 cells were also examined. Bortezomib inhibited cells proliferation, triggered apoptosis, modulated the expression and activation of pro-survival signal transduction pathways proteins activated by ErbB receptors and inhibited proteasome activity in vitro. Furthermore, intraperitoneal administration of Bortezomib delayed tumor growth of SALTO-5 cells transplanted in BALB-neuT mice and protracted mice survival. Our findings further support the use of Bortezomib for the treatment of HNC and reveal its ineffectiveness in counteracting the activation of deregulated specific signaling pathways in HNC cell lines when resistance to proteasome inhibition is developed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2464-2464
Author(s):  
Christoph Driessen ◽  
Müller-Ide Hendrik ◽  
Gogel Jeanette ◽  
Kraus Marianne ◽  
Kanz Lothar ◽  
...  

Abstract Upregulation of alternative proteolytic pathways characterizes malignant cells that overcome proteasome inhibition in vitro. The proteasome inhibitor Bortezomib (Velcade®), which selectively targets only one of the three active subunits of the proteasome, has shown limited activity in AML. Ritonavir (Norvir®) is an aspartate protease inhibitor used in intensive HIV-therapy, where therapeutic levels of 5–20μM are reached with an oral dose of 1200 mg/d. A cytotoxic effect of Ritonavir against malignant cells due to proteasome inhibition has been suggested (Gaedicke et al., Cancer Research 62, December 1, 2002). We have here tested the effect of Ritonavir on AML cells, both as single agent and in combination with Bortezomib. Ritonavir induced cytotoxic death in AML cell lines and primary AML blasts with an IC50 of 30–40 μM in vitro. The combination of Ritonavir and Bortezomib was synergistic in vitro, i.e. subtoxic concentrations of Ritonavir at 10 μM combined with subtoxic Bortezomib 5–10 nM induced robust cytotoxicity in AML cell lines and freshly isolated primary AML blasts. Using a novel chemical probe that for the first time allows to visualize the individual activity of proteasomal subunits in intact AML blasts, we show that Velcade selectively abrogates β5 proteasomal activity at 20 nM in AML cells, as expected. Ritonavir, by contrast, had no effect on active proteasomal subunits up to 50 μM. Thus, the synergistic effect of Ritonavir with Bortezomib on AML cells is not due to inhibition of the same proteasomal target by both drugs, but more likely mediated by blocking alternative proteolytic pathways. One individual patient aged 72 years with an early relaps of AML was treated with Ritonavir 400–600 mg/d p.o.. During treatment, the absolute leukocyte count dropped from 24000/μl to 8000/μl while the ANC raised from 185/μl to 1530/μl. Ritonavir was withdrawn due to diarrhoea and abdominal cramps, leading to a sharp increase in peripheral blood blasts and leukocytes. Retreatment with Ritonavir at a reduced dose of 200 mg/d combined with Velcade 1mg/sqm was tolerated and stabilized leukocyte counts for a short period of time. We conclude that Ritonavir has activity against chemotherapy-refractory AML in vitro and in vivo. The combination of Velcade and Ritonavir might allow to synergistically target the proteolytic machinery of AML blasts with tolerable toxicity.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1513-1513
Author(s):  
Philipp Baumann ◽  
Karin Mueller ◽  
Sonja Mandl-Weber ◽  
Helmut Ostermann ◽  
Ralf Schmidmaier ◽  
...  

Abstract Purpose: Multiple Myeloma (MM) is still an incurable disease. Patients become resistant to cytotoxic drugs and die of disease progression. Bortezomib is the first approved member of a new class of antineoplastic agents, the proteasome inhibitors. It has synergistic effects with genotoxic drugs and steroids in vitro and in vivo. However, single agent activity in humans is only moderate and specific toxicity (e.g. neurotoxicity) often limits its clinical use. Further proteasome inhibitors need to be developed to optimize this promising treatment option. Methods: The new proteasome inhibitor S-2209 was characterized by several assays. Inhibition of the chymotryptic activity of the human 20S proteasome was determined with the in-vivo protease inhibition assay. Additionally, proteasome inhibition was determined in isolated PBMCs from S2209-pretreated wistar rats. Inhibition of NFκB activity was determined using a NFκB reporter gene assay. Cell growth rates of MM cells (OPM-2, U266, RPMI-8226 and NCI-H929) were measured with the WST-1 assay. Induction of apoptosis was shown by flow cytometry after staining with annexin-V-FITC and propidium iodide. Intracellular signal modulation was demonstrated by western blotting. Toxicity of the substance was tested in male wistar rats. Results: The proteasome inhibition assay revealed an IC50 at ∼220nM. The NFκB inhibition assay using an A549-NFκB-SEAP transfected cell line showed an EC50 of 0.9μM. Upon incubation with S-2209, cell growth as well as cell proliferation in MM cell lines was significantly inhibited (IC50 100nM – 600nM). Furthermore, the incubation with S-2209 resulted in strong induction of apoptosis in all four MM cell lines even at nanomolar concentrations (IC50 at ∼300nm) as well as primary cells. Western blotting revealed caspase-3 cleavage and upregulon of p53 and increased phosphorylation of IκB. No induction of apoptosis was detected in PBMCs from healthy humans. Despite the administration of 5, 10 or 15mg/kg/day in wistar rats, no toxicity with respect to body weight, hepatic enzymes (ALAT ASAT, ALP), creatinin or hemoglobin was seen. Proteasome inhibition in white blood cells isolated from the treated rats was higher in the S-2209 treated animals than in control animals treated with 0.1mg/kg/d bortezomib (89% vs. 70% respectively). Conclusions: The proteasome inhibitor S-2209 inhibitis MM cell growth and induces apoptosis. This is accompanied by a strong inhibition of proteasome and of the NFκB activity. Because S-2209 shows a favourable toxicity profile in vivo, further clinical development of this promising drug is urgently needed.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 843-843
Author(s):  
Eric SancheZ ◽  
Richard A Campbell ◽  
Jeffrey A Steinberg ◽  
Mingjie Li ◽  
Haiming Chen ◽  
...  

Abstract Proteasome inhibitors (PI) have been shown to be effective agents for the treatment of multiple myeloma (MM) and enhance the anti-tumor effects of a variety of chemotherapeutic drugs including melphalan and doxorubicin as well as arsenic trioxide (ATO). The novel proteasome inhibitor CEP-18770 has recently been shown to induce cytotoxic effects across a broad panel of human tumor cell lines including MM in vitro. However, little data exists on the in vivo anti-MM effects of this PI either alone or in combination with other active anti-MM drugs. First, we examined the anti-proliferative effects of treating MM cell lines in vitro with CEP-18770 alone and in combination with melphalan, arsenic trioxide (ATO) and doxorubicin. MM cell lines were cultured without fetal bovine serum and incubated in the presence of CEP-18770 alone and in combination with these agents for 48 hours. Cell growth was then measured using an MTS assay. First, RPMI8226 and U266 cells were tested in vitro using a constant concentration of melphalan or doxorubicin in combination with varying concentrations of CEP-18770 or varying concentrations of the chemotherapeutic agent with constant CEP-18770. Although single agent treatment showed marked anti-proliferative effects, combination indexes as calculated by the Chou-Talalay method showed synergistic anti- MM effects of CEP-18770 with either melphalan or doxorubicin in these MM cell lines. In addition, similar experiments were carried out evaluating the combination of ATO plus CEP-18770 in RPMI8226 cells and also showed synergism with this combination. Next, a series of in vivo studies were conducted using our SCID-hu models of MM including LAGλ-1, LAGκ-1A and LAGκ-1B. Mice receiving CEP-18770 at 0.1, 0.3, 1, and 3 mg/kg were injected twice weekly via intravenous injection throughout the study. CEP-18770 dosed at 10 mg/kg was administered via oral gavage twice weekly and mice dosed with melphalan received injections once weekly via intraperitoneal injection. Mice bearing intramuscularly implanted LAGλ-1 were treated with CEP-18770 or vehicle alone. Mice treated with the PI inhibited tumor growth as determined by human immunoglobulin (hIg) G levels and measurement of tumor volume (P = 0.0008) compared to mice receiving vehicle. A significant inhibition of both human paraprotein secretion and reduction of tumor growth was also observed in LAGk-1A-bearing mice treated with CEP-18770 at 1, 3 and 10 mg/kg (hIgG: P = 0.0001, P = 0.0002 and P = 0.0001, respectively; tumor volume: P = 0.0001, P = 0.0001 and P = 0.0001, respectively) and LAGk-1B-bearing mice treated with CEP-18770 at 3 and 10 mg/kg (hIgG: P = 0.0008 and P = 0.0034, respectively; tumor volume: P = 0.0008 and P = 0.0028, respectively) compared to mice receiving vehicle. Finally, the combination of CEP-18770 (1 mg/kg) plus melphalan (3 mg/kg) was tested in LAGk-1B-bearing mice. Mice treated with the combination showed markedly smaller tumors compared to treatment with vehicle (P = 0.0008) or melphalan alone (P = 0.0204). Mice treated with the PI alone or in combination with melphalan did not show any observed toxicity. Thus, these studies provide promising preclinical data to suggest the potent anti-MM effects of CEP-18770 both in vitro and in vivo and also suggest that this new PI may enhance the anti-MM effects of several active anti-MM agents including melphalan, doxorubicin and ATO.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii471-iii471
Author(s):  
Marc Garcia-Moure ◽  
Marisol González-Huarriz ◽  
Daniel de la Nava ◽  
Lucía Marrodán ◽  
Cande Gomez-Manzano ◽  
...  

Abstract Current therapies for atypical teratoid/rhabdoid tumors (AT/RTs) are suboptimal, resulting in a 2-year OS below 20% and the development of severe side effects. Therefore, we need to explore alternative therapeutic approaches for this disease. Since the virus Delta24-RGD has already demonstrated its efficacy and safety as a therapeutic agent for brain tumors, including pediatric patients, here we propose to evaluate the anti-tumor effect of Delta24-RGD in AT/RT. In vitro, Delta24-RGD infects and replicates in AT/RT cultures followed by oncolysis, obtaining IC50 values below 1 PFU/cell. In vivo, a single local injection of Delta-24-RGD in three infratentorial AT/RT models (BT-12, CHLA-06 and CHLA-266) extended significantly the median OS (50 to 78 days BT-12; 21 to 31 days CHLA-06; 64 to 110 days CHLA-266). Delta-24-RGD also increased the survival of mice bearing supratentorial CHLA-266 tumors (from 93 to 132 days). Next, we evaluated the efficacy of Delta24-RGD in a model mimicking metastatic disease through intraventricular injection of BT-12-luciferase cells. Administration of Delta24-RGD inhibited tumor growth and development of metastases, leading to an increased OS and nearly 70% of long-term survivors. The interaction between Delta24-RGD and the immune system was evaluated in humanized mice models bearing CHLA-06. In this model, Delta24-RGD treatment extended OS (from 23 to 34 days) and we characterized the anti-tumor immune landscape in control and Delta24-RGD treated mice by transcriptional and functional analyses. These results underscore the potential of Delta24-RGD as a promising therapeutic choice for patients affected by AT/RT.


2021 ◽  
Vol 11 ◽  
Author(s):  
Laurence C. Cheung ◽  
Rebecca de Kraa ◽  
Joyce Oommen ◽  
Grace-Alyssa Chua ◽  
Sajla Singh ◽  
...  

BackgroundInfants with KMT2A-rearranged B-cell precursor acute lymphoblastic leukemia (ALL) have poor outcomes. There is an urgent need to identify novel agents to improve survival. Proteasome inhibition has emerged as a promising therapeutic strategy for several hematological malignancies. The aim of this study was to determine the preclinical efficacy of the selective proteasome inhibitor carfilzomib, for infants with KMT2A-rearranged ALL.MethodsEight infant ALL cell lines were extensively characterized for immunophenotypic and cytogenetic features. In vitro cytotoxicity to carfilzomib was assessed using a modified Alamar Blue assay with cells in logarithmic growth. The Bliss Independence model was applied to determine synergy between carfilzomib and the nine conventional chemotherapeutic agents used to treat infants with ALL. Established xenograft models were used to identify the maximal tolerated dose of carfilzomib and determine in vivo efficacy.ResultsCarfilzomib demonstrated low IC50 concentrations within the nanomolar range (6.0–15.8 nm) across the panel of cell lines. Combination drug testing indicated in vitro synergy between carfilzomib and several conventional chemotherapeutic agents including vincristine, daunorubicin, dexamethasone, L-asparaginase, and 4-hydroperoxycyclophosphamide. In vivo assessment did not lead to a survival advantage for either carfilzomib monotherapy, when used to treat both low or high disease burden, or for carfilzomib in combination with multi-agent induction chemotherapy comprising of vincristine, dexamethasone, and L-asparaginase.ConclusionsOur study highlights that in vitro efficacy does not necessarily translate to benefit in vivo and emphasizes the importance of in vivo validation prior to suggesting an agent for clinical use. Whilst proteasome inhibitors have an important role to play in several hematological malignancies, our findings guard against prioritization of carfilzomib for treatment of KMT2A-rearranged infant ALL in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document