Seasonal Variation of Cloud Systems over ARM SGP

2008 ◽  
Vol 65 (7) ◽  
pp. 2107-2129 ◽  
Author(s):  
Xiaoqing Wu ◽  
Sunwook Park ◽  
Qilong Min

Abstract Increased observational analyses provide a unique opportunity to perform years-long cloud-resolving model (CRM) simulations and generate long-term cloud properties that are very much in demand for improving the representation of clouds in general circulation models (GCMs). A year 2000 CRM simulation is presented here using the variationally constrained mesoscale analysis and surface measurements. The year-long (3 January–31 December 2000) CRM surface precipitation is highly correlated with the Atmospheric Radiation Measurement (ARM) observations with a correlation coefficient of 0.97. The large-scale forcing is the dominant factor responsible for producing the precipitation in summer, spring, and fall, but the surface heat fluxes play a more important role during winter when the forcing is weak. The CRM-simulated year-long cloud liquid water path and cloud (liquid and ice) optical depth are also in good agreement (correlation coefficients of 0.73 and 0.64, respectively) with the ARM retrievals over the Southern Great Plains (SGP). The simulated cloud systems have 50% more ice water than liquid water in the annual mean. The vertical distributions of ice and liquid water have a single peak during spring (March–May) and summer (June–August), but a second peak occurs near the surface during winter (December–February) and fall (September–November). The impacts of seasonally varied cloud water are very much reflected in the cloud radiative forcing at the top-of-atmosphere (TOA) and the surface, as well as in the vertical profiles of radiative heating rates. The cloudy-sky total (shortwave and longwave) radiative heating profile shows a dipole pattern (cooling above and warming below) during spring and summer, while a second peak of cloud radiative cooling appears near the surface during winter and fall.

2014 ◽  
Vol 71 (7) ◽  
pp. 2516-2533 ◽  
Author(s):  
Alexander Ruzmaikin ◽  
Hartmut H. Aumann ◽  
Evan M. Manning

Abstract New global satellite data from the Atmospheric Infrared Sounder (AIRS) are applied to study the tropospheric relative humidity (RH) distribution and its influence on outgoing longwave radiation (OLR) for January and July in 2003, 2007, and 2011. RH has the largest maxima over 90% in the equatorial tropopause layer in January. Maxima in July do not arise above 60%. Seasonal variations of about 20% in zonally averaged RH are observed in the equatorial region of the low troposphere, in the equatorial tropopause layer, and in the polar regions. The seasonal variability in the recent decade has increased by about 5% relative to that in 1973–88, indicating a positive trend. The observed RH profiles indicate a moist bias in the tropical and subtropical regions typically produced by the general circulation models. The new data and method of evaluating the statistical significance of bimodality confirm bimodal probability distributions of RH at large tropospheric scales, notably in the ascending branch of the Hadley circulation. Bimodality is also seen at 500–300 hPa in mid- and high latitudes. Since the drying time of the air is short compared with the mixing time of moist and dry air, the bimodality reflects the large-scale distribution of sources of moisture and the atmospheric circulation. Analysis of OLR dependence on surface temperature shows a 0.2 W m−2 K−1 difference in sensitivities between clear-sky and all-sky OLR, indicating a positive longwave cloud radiative forcing. Diagrams of the clear-sky OLR as functions of percentiles of surface temperature and relative humidity in the tropics are designed to provide a new measure of the supergreenhouse effect.


2004 ◽  
Vol 4 (5) ◽  
pp. 6823-6836 ◽  
Author(s):  
C. Luo

Abstract. Long-term and large-scale correlations between Advanced Very High-Resolution Radiometer (AVHRR) aerosol optical depth and International Satellite Cloud Climatology Project (ISCCP) monthly cloud amount data show significant regional scale relationships between cloud amount and aerosols, consistent with aerosol-cloud interactions. Positive correlations between aerosols and cloud amount are associated with North American and Asian aerosols in the North Atlantic and Pacific storm tracks, and mineral aerosols in the tropical North Atlantic. Negative correlations are seen near biomass burning regions of North Africa and Indonesia, as well as south of the main mineral aerosol source of North Africa. These results suggest that there are relationships between aerosols and clouds in the observations that can be used by general circulation models to verify the correct forcing mechanisms for both direct and indirect radiative forcing by clouds.


2015 ◽  
Vol 15 (5) ◽  
pp. 7783-7836
Author(s):  
V. Sant ◽  
R. Posselt ◽  
U. Lohmann

Abstract. In order to improve the global representation of rain formation in marine stratiform clouds a new parameterization with three prognostic liquid water classes was implemented into the general circulation model ECHAM5 with the aerosol module HAM. The additionally introduced drizzle class improves the physical representation of the droplet spectrum and more importantly, improves the microphysical processes relevant for precipitation formation compared to the standard parameterization. In order to avoid a mismatch of the liquid and ice phase, the prognostic treatment of snow has been introduced too. This has a significant effect on the amount and altitude of ice clouds, which in turn does not only affect in- and outgoing radiation, but also the parameterized collection rates. With the introduction of a prognostic precipitation scheme a more realistic representation of both liquid and ice phase large-scale precipitation is achieved compared to a diagnostic treatment. An encouraging finding is that the sensitivity of the liquid water path to the anthropogenic aerosol forcing with the prognostic treatment is reduced by about 25%. Although the total net radiative forcing is increased from 1.4±0.4 to 1.6±0.4 W m−2 from the control to the prognostic model version, the difference is within the interannual variability. Altogether the results suggest that the treatment of precipitation in global circulation models has a significant influence on the phase and lifetime of clouds, but also hints towards the uncertainties related to a prognostic precipitation scheme.


2009 ◽  
Vol 66 (3) ◽  
pp. 579-601 ◽  
Author(s):  
Tapio Schneider ◽  
Junjun Liu

Abstract The zonal flow in Jupiter’s upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter’s jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter’s jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together, and if upper-tropospheric dynamics are linked to a magnetohydrodynamic (MHD) drag that acts deep in the atmosphere and affects the zonal flow away from but not near the equator. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmosphere, with its speed changing with depth, away from the equator up to depths at which the MHD drag acts. The theory is supported by simulations with an energetically consistent general circulation model of Jupiter’s outer atmosphere. A simulation that incorporates differential radiative heating and intrinsic heat fluxes reproduces Jupiter’s observed jets and thermal structure and makes testable predictions about as yet unobserved aspects thereof. A control simulation that incorporates only differential radiative heating but not intrinsic heat fluxes produces off-equatorial jets but no equatorial superrotation; another control simulation that incorporates only intrinsic heat fluxes but not differential radiative heating produces equatorial superrotation but no off-equatorial jets. The proposed mechanisms for the formation of jets and equatorial superrotation likely act in the atmospheres of all giant planets.


2000 ◽  
Vol 24 (4) ◽  
pp. 499-514 ◽  
Author(s):  
Richard Washington

The atmosphere is known to be forced by a variety of energy sources, including radiation and heat fluxes emanating from the boundary layer associated with sea-surface temperature anomalies and land-surface features. The atmosphere is also subject to internal variability which is essentially unforced and is thought to be a basic characteristic of fluids. Whereas much work has been done in quantifying the links between external forcing of the atmosphere and its long-term response as well as the influence of boundary layer forcing in determining organized, large-scale modes of planetary-scale circulation, less is known about the importance of internal variability or chaos in determining the evolution of weather and climate. General circulation models (GCMs) now provide for this possibility. Multiple evolutions of the climate system may be computed in GCM simulations. Where these simulations are identical except for the conditions by which the model is initialized, the degree of departure in the evolution of climate from one model run to the next corresponds precisely to the degree of internal variability or chaos present in the model atmosphere. A methodology for quantifying this chaotic forcing is considered and is applied to century-long integrations of the UK Meteorological Office model HADAM2A.


2015 ◽  
Vol 15 (15) ◽  
pp. 8717-8738 ◽  
Author(s):  
V. Sant ◽  
R. Posselt ◽  
U. Lohmann

Abstract. A new parameterization with three prognostic liquid water classes was implemented into the general circulation model (GCM) ECHAM5 with the aerosol module HAM in order to improve the global representation of rain formation in marine stratiform clouds. The additionally introduced drizzle class improves the physical representation of the droplet spectrum and, more importantly, improves the microphysical processes relevant for precipitation formation compared to the standard parameterization. In order to avoid a mismatch of the liquid and ice phase, a prognostic treatment of snow has been introduced too. This has a significant effect on the amount and altitude of ice clouds, which in turn affects not only the in- and outgoing radiation but also the parameterized collection rates. With the introduction of a prognostic precipitation scheme, a more realistic representation of both liquid and ice phase large-scale precipitation is achieved compared to a diagnostic treatment. An encouraging finding is that with the prognostic treatment the increase of the liquid water path in response to anthropogenic aerosols is reduced by about 25 %. Although the total net radiative forcing is decreased from −1.3±0.3 to −1.6±0.3 W m−2 from the control to the prognostic model version, the difference is within the interannual variability. Altogether the results suggest that the treatment of precipitation in global circulation models has not only a significant influence on the phase of clouds and their conversion rates, but also hints towards uncertainties related to a prognostic precipitation scheme.


2007 ◽  
Vol 135 (8) ◽  
pp. 2841-2853 ◽  
Author(s):  
Xiaoqing Wu ◽  
Xin-Zhong Liang ◽  
Sunwook Park

Abstract This study aims to combine the cloud-resolving model (CRM) simulations with the Department of Energy’s Atmospheric Radiation Measurement Program (ARM) observations to provide long-term comprehensive and physically consistent data that facilitate quantifying the effects of subgrid cloud–radiation interactions and ultimately to develop physically based parameterization of these interactions in general circulation models. The CRM is applied here to simulate the midlatitude cloud systems observed at the ARM southern Great Plains (SGP) site during the 1997 intensive observation period. As in the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE), the CRM-simulated ensemble mean quantities such as cloud liquid water, cloud fraction, precipitation, and radiative fluxes are generally in line with the surface measurements, satellite, and radar retrievals. The CRM differences from the ARM estimates, when averaged over the entire period, are less than 5 W m−2 in both longwave and shortwave radiative fluxes at the top of the atmosphere and surface. Because of the different large-scale forcing and surface heat fluxes in ARM and TOGA COARE, the CRM produces different cloud distributions over the midlatitude continent and tropical ocean. However, diagnostic analyses show that the subgrid cloud variability has similar impact on the domain-averaged radiative fluxes and heating rates in ARM as in TOGA COARE.


2013 ◽  
Vol 141 (3) ◽  
pp. 1099-1117 ◽  
Author(s):  
Andrew Charles ◽  
Bertrand Timbal ◽  
Elodie Fernandez ◽  
Harry Hendon

Abstract Seasonal predictions based on coupled atmosphere–ocean general circulation models (GCMs) provide useful predictions of large-scale circulation but lack the conditioning on topography required for locally relevant prediction. In this study a statistical downscaling model based on meteorological analogs was applied to continental-scale GCM-based seasonal forecasts and high quality historical site observations to generate a set of downscaled precipitation hindcasts at 160 sites in the South Murray Darling Basin region of Australia. Large-scale fields from the Predictive Ocean–Atmosphere Model for Australia (POAMA) 1.5b GCM-based seasonal prediction system are used for analog selection. Correlation analysis indicates modest levels of predictability in the target region for the selected predictor fields. A single best-match analog was found using model sea level pressure, meridional wind, and rainfall fields, with the procedure applied to 3-month-long reforecasts, initialized on the first day of each month from 1980 to 2006, for each model day of 10 ensemble members. Assessment of the total accumulated rainfall and number of rainy days in the 3-month reforecasts shows that the downscaling procedure corrects the local climate variability with no mean effect on predictive skill, resulting in a smaller magnitude error. The amount of total rainfall and number of rain days in the downscaled output is significantly improved over the direct GCM output as measured by the difference in median and tercile thresholds between station observations and downscaled rainfall. Confidence in the downscaled output is enhanced by strong consistency between the large-scale mean of the downscaled and direct GCM precipitation.


2015 ◽  
Vol 72 (1) ◽  
pp. 55-74 ◽  
Author(s):  
Qiang Deng ◽  
Boualem Khouider ◽  
Andrew J. Majda

Abstract The representation of the Madden–Julian oscillation (MJO) is still a challenge for numerical weather prediction and general circulation models (GCMs) because of the inadequate treatment of convection and the associated interactions across scales by the underlying cumulus parameterizations. One new promising direction is the use of the stochastic multicloud model (SMCM) that has been designed specifically to capture the missing variability due to unresolved processes of convection and their impact on the large-scale flow. The SMCM specifically models the area fractions of the three cloud types (congestus, deep, and stratiform) that characterize organized convective systems on all scales. The SMCM captures the stochastic behavior of these three cloud types via a judiciously constructed Markov birth–death process using a particle interacting lattice model. The SMCM has been successfully applied for convectively coupled waves in a simplified primitive equation model and validated against radar data of tropical precipitation. In this work, the authors use for the first time the SMCM in a GCM. The authors build on previous work of coupling the High-Order Methods Modeling Environment (HOMME) NCAR GCM to a simple multicloud model. The authors tested the new SMCM-HOMME model in the parameter regime considered previously and found that the stochastic model drastically improves the results of the deterministic model. Clear MJO-like structures with many realistic features from nature are reproduced by SMCM-HOMME in the physically relevant parameter regime including wave trains of MJOs that organize intermittently in time. Also one of the caveats of the deterministic simulation of requiring a doubling of the moisture background is not required anymore.


2000 ◽  
Vol 18 (5) ◽  
pp. 583-588 ◽  
Author(s):  
W. Soon ◽  
E. Posmentier ◽  
S. Baliunas

Abstract. We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot) and solar UV (SUV). The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models) that may better capture radiative and dynamical couplings of the troposphere and stratosphere.Key words: Meteorology and atmospheric dynamics (climatology · general or miscellaneous) · Solar physics · astrophysics · and astronomy (ultraviolet emissions)


Sign in / Sign up

Export Citation Format

Share Document