scholarly journals Sensitivity of Hybrid ENSO Models to Unresolved Atmospheric Variability

2008 ◽  
Vol 21 (15) ◽  
pp. 3704-3721 ◽  
Author(s):  
J. Zavala-Garay ◽  
C. Zhang ◽  
A. M. Moore ◽  
A. T. Wittenberg ◽  
M. J. Harrison ◽  
...  

Abstract A common practice in the design of forecast models for ENSO is to couple ocean general circulation models to simple atmospheric models. Therefore, by construction these models (known as hybrid ENSO models) do not resolve various kinds of atmospheric variability [e.g., the Madden–Julian oscillation (MJO) and westerly wind bursts] that are often regarded as “unwanted noise.” In this work the sensitivity of three hybrid ENSO models to this unresolved atmospheric variability is studied. The hybrid coupled models were tuned to be asymptotically stable and the magnitude, and spatial and temporal structure of the unresolved variability was extracted from observations. The results suggest that this neglected variability can add an important piece of realism and forecast skill to the hybrid models. The models were found to respond linearly to the low-frequency part of the neglected atmospheric variability, in agreement with previous findings with intermediate models. While the wind anomalies associated with the MJO typically explain a small fraction of the unresolved variability, a large fraction of the interannual variability can be excited by this forcing. A large correlation was found between interannual anomalies of Kelvin waves forced by the intraseasonal MJO and the Kelvin waves forced by the low-frequency part of the MJO. That is, in years when the MJO tends to be more active it also produces a larger low-frequency contribution, which can then resonate with the large-scale coupled system. Other kinds of atmospheric variability not related to the MJO can also produce interannual anomalies in the hybrid models. However, when projected on the characteristics of Kelvin waves, no clear correlation between its low-frequency content and its intraseasonal activity was found. This suggests that understanding the mechanisms by which the intraseasonal MJO interacts with the ocean to modulate its low-frequency content may help to better to predict ENSO variability.

2005 ◽  
Vol 18 (13) ◽  
pp. 2441-2459 ◽  
Author(s):  
J. Zavala-Garay ◽  
C. Zhang ◽  
A. M. Moore ◽  
R. Kleeman

Abstract The possibility that the tropical Pacific coupled system linearly amplifies perturbations produced by the Madden–Julian oscillation (MJO) is explored. This requires an estimate of the low-frequency tail of the MJO. Using 23 yr of NCEP–NCAR reanalyses of surface wind and Reynolds SST, we show that the spatial structure that dominates the intraseasonal band (i.e., the MJO) also dominates the low-frequency band once the anomalies directly related to ENSO have been removed. This low-frequency contribution of the intraseasonal variability is not included in most ENSO coupled models used to date. Its effect in a coupled model of intermediate complexity has, therefore, been studied. It is found that this “MJO forcing” (τMJO) can explain a large fraction of the interannual variability in an asymptotically stable version of the model. This interaction is achieved via linear dynamics. That is, it is the cumulative effect of individual events that maintains ENSOs in this model. The largest coupled wind anomalies are initiated after a sequence of several downwelling Kelvin waves of the same sign have been forced by τMJO. The cumulative effect of the forced Kelvin waves is to persist the (small) SST anomalies in the eastern Pacific just enough for the coupled ocean–atmosphere dynamics to amplify the anomalies into a mature ENSO event. Even though τMJO explains just a small fraction of the energy contained in the stress not associated with ENSO, a large fraction of the modeled ENSO variability is excited by this forcing. The characteristics that make τMJO an optimal stochastic forcing for the model are discussed. The large zonal extent is an important factor that differentiates the MJO from other sources of stochastic forcing.


Author(s):  
Andrew J Majda ◽  
Christian Franzke ◽  
Boualem Khouider

Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here.


2019 ◽  
Vol 19 (17) ◽  
pp. 11383-11399
Author(s):  
Jonathan K. P. Shonk ◽  
Teferi D. Demissie ◽  
Thomas Toniazzo

Abstract. Modern coupled general circulation models produce systematic biases in the tropical Atlantic that hamper the reliability of long-range predictions. This study focuses on a common springtime westerly wind bias in the equatorial Atlantic in seasonal hindcasts from two coupled models – ECMWF System 4 and EC-Earth v2.3 – and in hindcasts also based on System 4, but with prescribed sea-surface temperatures. The development of the equatorial westerly bias in early April is marked by a rapid transition from a wintertime easterly, cold tongue bias to a springtime westerly bias regime that displays a marked double intertropical convergence zone (ITCZ). The transition is a seasonal feature of the model climatology (independent of initialisation date) and is associated with a seasonal increase in rainfall where a second branch of the ITCZ is produced south of the Equator. Excess off-equatorial convergence redirects the trade winds away from the Equator. Based on arguments of temporal coincidence, the results of our analysis contrast with those from previous work, and alleged causes hereto identified as the likely cause of the equatorial westerly bias in other models must be discarded. Quite in general, we find no evidence of remote influences on the development of the springtime equatorial bias in the Atlantic in the IFS-based models. Limited evidence however is presented that supports the hypothesis of an incorrect representation of the meridional equatorward flow in the marine boundary layer of the southern Atlantic as a contributing factor. Erroneous dynamical constraints on the flow upstream of the Equator may generate convergence and associated rainfall south of the Equator. This directs attention to the representation of the properties of the subtropical boundary layer as a potential source for the double ITCZ bias.


2011 ◽  
Vol 24 (14) ◽  
pp. 3609-3623 ◽  
Author(s):  
Fiona Johnson ◽  
Seth Westra ◽  
Ashish Sharma ◽  
Andrew J. Pitman

Abstract Climate change impact studies for water resource applications, such as the development of projections of reservoir yields or the assessment of likely frequency and amplitude of drought under a future climate, require that the year-to-year persistence in a range of hydrological variables such as catchment average rainfall be properly represented. This persistence is often attributable to low-frequency variability in the global sea surface temperature (SST) field and other large-scale climate variables through a complex sequence of teleconnections. To evaluate the capacity of general circulation models (GCMs) to accurately represent this low-frequency variability, a set of wavelet-based skill measures has been developed to compare GCM performance in representing interannual variability with the observed global SST data, as well as to assess the extent to which this variability is imparted in precipitation and surface pressure anomaly fields. A validation of the derived skill measures is performed using GCM precipitation as an input in a reservoir storage context, with the accuracy of reservoir storage estimates shown to be improved by using GCM outputs that correctly represent the observed low-frequency variability. Significant differences in the performance of different GCMs is demonstrated, suggesting that judicious selection of models is required if the climate impact assessment is sensitive to low-frequency variability. The two GCMs that were found to exhibit the most appropriate representation of global low-frequency variability for individual variables assessed were the Istituto Nazionale di Geofisica e Vulcanologia (INGV) ECHAM4 and L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4); when considering all three variables, the Max Planck Institute (MPI) ECHAM5 performed well. Importantly, models that represented interannual variability well for SST also performed well for the other two variables, while models that performed poorly for SST also had consistently low skill across the remaining variables.


2014 ◽  
Vol 27 (14) ◽  
pp. 5285-5310 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Niklas Schneider ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker

Abstract One of the key characteristics of El Niño–Southern Oscillation (ENSO) is its synchronization to the annual cycle, which manifests in the tendency of ENSO events to peak during boreal winter. Current theory offers two possible mechanisms to account the for ENSO synchronization: frequency locking of ENSO to periodic forcing by the annual cycle, or the effect of the seasonally varying background state of the equatorial Pacific on ENSO’s coupled stability. Using a parametric recharge oscillator (PRO) model of ENSO, the authors test which of these scenarios provides a better explanation of the observed ENSO synchronization. Analytical solutions of the PRO model show that the annual modulation of the growth rate parameter results directly in ENSO’s seasonal variance, amplitude modulation, and 2:1 phase synchronization to the annual cycle. The solutions are shown to be applicable to the long-term behavior of the damped model excited by stochastic noise, which produces synchronization characteristics that agree with the observations and can account for the variety of ENSO synchronization behavior in state-of-the-art coupled general circulation models. The model also predicts spectral peaks at “combination tones” between ENSO and the annual cycle that exist in the observations and many coupled models. In contrast, the nonlinear frequency entrainment scenario predicts the existence of a spectral peak at the biennial frequency corresponding to the observed 2:1 phase synchronization. Such a peak does not exist in the observed ENSO spectrum. Hence, it can be concluded that the seasonal modulation of the coupled stability is responsible for the synchronization of ENSO events to the annual cycle.


2013 ◽  
Vol 26 (7) ◽  
pp. 2390-2407 ◽  
Author(s):  
Laura Jackson ◽  
Michael Vellinga

Abstract Multidecadal to centennial variability of the Atlantic meridional overturning circulation (AMOC) is investigated in a multi-thousand-year simulation of the third version of the Hadley Centre Coupled Model (HadCM3) and in an ensemble of general circulation models (GCMs) based on HadCM3 with perturbed physics. Large changes in the AMOC in the standard HadCM3 are strongly related to salinity anomalies in the deep-water formation regions, with anomalies arriving via two pathways. The first is from a coupled feedback in the equatorial Atlantic Ocean, described previously by Vellinga and Wu, and the second is from variability in the Arctic Ocean, possibly driven by stochastic sea level pressure. The low-frequency variability of the AMOC in HadCM3 is well predicted from salinity anomalies from these two pathways. The sensitivity of these processes to model physics is investigated using a small ensemble based on HadCM3 where parameters relating to physical processes are varied. The AMOC responds consistently to the salinity anomalies in the ensemble members. However, 1) the timing of the response depends on the background climate state and 2) some ensemble members have significantly larger AMOC and salinity variability than in standard HadCM3 simulations. In this small ensemble, the presence and strength of multidecadal to centennial AMOC variability is associated with the variability of salinity exported from the Arctic, with little multidecadal to centennial variability of either in the coldest members. This demonstrates how the background climate state can alter the frequency and strength of AMOC variability and is a first step toward understanding how AMOC variability differs within a multimodel context.


2011 ◽  
Vol 24 (22) ◽  
pp. 5935-5950 ◽  
Author(s):  
Elinor R. Martin ◽  
Courtney Schumacher

Abstract A census of 19 coupled and 12 uncoupled model runs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) shows that all models have the ability to simulate the location and height of the Caribbean low-level jet (CLLJ); however, the observed semiannual cycle of the CLLJ magnitude was a challenge for the models to reproduce. In particular, model means failed to capture the strong July CLLJ peak as a result of the lack of westward and southward expansion of the North Atlantic subtropical high (NASH) between May and July. The NASH was also found to be too strong, particularly during the first 6 months of the year in the coupled model runs, which led to increased meridional sea level pressure gradients across the southern Caribbean and, hence, an overly strong CLLJ. The ability of the models to simulate the correlation between the CLLJ and regional precipitation varied based on season and region. During summer months, the negative correlation between the CLLJ and Caribbean precipitation anomalies was reproduced in the majority of models, with uncoupled models outperforming coupled models. The positive correlation between the CLLJ and the central U.S. precipitation during February was more challenging for the models, with the uncoupled models failing to reproduce a significant relationship. This may be a result of overactive convective parameterizations raining out too much moisture in the Caribbean meaning less is available for transport northward, or due to incorrect moisture fluxes over the Gulf of Mexico. The representation of the CLLJ in general circulation models has important consequences for accurate predictions and projections of future climate in the Caribbean and surrounding regions.


1980 ◽  
Vol 33 (5) ◽  
pp. 897
Author(s):  
BG Hunt

Numerous ways of modelling climate exist, ranging from a single, simple mathematical equation up to complex global atmospheric--oceanic coupled models which explicitly forecast the basic weather elements such as temperature, pressure, wind velocity etc. These models, known as general circulation models, currently provide the most comprehensive and credible representations of climatic systems. The structure of these models is briefly outlined, and results from a number of models are presented to illustrate their versatility. A number of other simpler modelling approaches to climate are discussed to emphasize the opportunities which this problem presents for creative and rewarding research.


2019 ◽  
Vol 77 (1) ◽  
pp. 149-165 ◽  
Author(s):  
Yixiong Lu ◽  
Tongwen Wu ◽  
Weihua Jie ◽  
Adam A. Scaife ◽  
Martin B. Andrews ◽  
...  

Abstract It is well known that the stratospheric quasi-biennial oscillation (QBO) is forced by equatorial waves with different horizontal/vertical scales, including Kelvin waves, mixed Rossby–gravity (MRG) waves, inertial gravity waves (GWs), and mesoscale GWs, but the relative contribution of each wave is currently not very clear. Proper representation of these waves is critical to the simulation of the QBO in general circulation models (GCMs). In this study, the vertical resolution in the Beijing Climate Center Atmospheric General Circulation Model (BCC-AGCM) is increased to better represent large-scale waves, and a mesoscale GW parameterization scheme, which is coupled to the convective sources, is implemented to provide unresolved wave forcing of the QBO. Results show that BCC-AGCM can spontaneously generate the QBO with realistic periods, amplitudes, and asymmetric features between westerly and easterly phases. There are significant spatiotemporal variations of parameterized convective GWs, largely contributing to a great degree of variability in the simulated QBO. In the eastward wind shear of the QBO at 20 hPa, forcing provided by resolved waves is 0.1–0.2 m s−1 day−1 and forcing provided by parameterized GWs is ~0.15 m s−1 day−1. On the other hand, westward forcings by resolved waves and parameterized GWs are ~0.1 and 0.4–0.5 m s−1 day−1, respectively. It is inferred that the eastward forcing of the QBO is provided by both Kelvin waves and mesoscale convective GWs, whereas the westward forcing is largely provided by mesoscale GWs. MRG waves barely contribute to the formation of the QBO in the model.


2006 ◽  
Vol 19 (17) ◽  
pp. 4308-4325 ◽  
Author(s):  
Sebastien Conil ◽  
Alex Hall

Abstract The primary regimes of local atmospheric variability are examined in a 6-km regional atmospheric model of the southern third of California, an area of significant land surface heterogeneity, intense topography, and climate diversity. The model was forced by reanalysis boundary conditions over the period 1995–2003. The region is approximately the same size as a typical grid box of the current generation of general circulation models used for global climate prediction and reanalysis product generation, and so can be thought of as a laboratory for the study of climate at spatial scales smaller than those resolved by global simulations and reanalysis products. It is found that the simulated circulation during the October–March wet season, when variability is most significant, can be understood through an objective classification technique in terms of three wind regimes. The composite surface wind patterns associated with these regimes exhibit significant spatial structure within the model domain, consistent with the complex topography of the region. These regimes also correspond nearly perfectly with the simulation’s highly structured patterns of variability in hydrology and temperature, and therefore are the main contributors to the local climate variability. The regimes are approximately equally likely to occur regardless of the phase of the classical large-scale modes of atmospheric variability prevailing in the Pacific–North American sector. The high degree of spatial structure of the local regimes and their tightly associated climate impacts, as well as their ambiguous relationship with the primary modes of large-scale variability, demonstrate that the local perspective offered by the high-resolution model is necessary to understand and predict the climate variations of the region.


Sign in / Sign up

Export Citation Format

Share Document