What Are the Sources of Mechanical Damping in Matsuno–Gill-Type Models?

2008 ◽  
Vol 21 (2) ◽  
pp. 165-179 ◽  
Author(s):  
Jia-Lin Lin ◽  
Brian E. Mapes ◽  
Weiqing Han

Abstract The Matsuno–Gill model has been widely used to study the tropical large-scale circulations and atmosphere–ocean interactions. However, a common critique of this model is that it requires a strong equivalent linear mechanical damping to get realistic wind response and it is unclear what could provide such a strong damping above the boundary layer. This study evaluates the sources and strength of equivalent linear mechanical damping in the Walker circulation by calculating the zonal momentum budget using 15 yr (1979–93) of daily global reanalysis data. Two different reanalyses [NCEP–NCAR and 15-yr ECMWF Re-Analysis (ERA-15)] give qualitatively similar results for all major terms, including the budget residual, whose structure is consistent with its interpretation as eddy momentum flux convergence by convective momentum transport (CMT). The Walker circulation is characterized by two distinct regions: a deep convection region over the Indo-Pacific warm pool and a shallow convection region over the eastern Pacific cold tongue. These two regions are separated by a strong upper-tropospheric ridge and a strong lower-tropospheric trough in the central Pacific. The resultant pressure gradient forces on both sides require strong (approximately 5–10 days) damping to balance them because Coriolis force near the equator is too small to provide the balance. In the deep convection region, the damping is provided by CMT and advection together in both the upper and lower troposphere. In the shallow convection region, on the other hand, the damping is provided mainly by advection in the upper troposphere and by CMT in the lower troposphere. In other words, the upper-level tropical easterly jet and the low-level trade wind are both braked by CMT. These results support the use of strong damping in the Matsuno–Gill-type models but suggest that the damping rate is spatially inhomogeneous and the CMT-related damping increases with the strength of convection. Implications for GCM’s simulation of tropical mean climate are discussed.

2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2014 ◽  
Vol 27 (22) ◽  
pp. 8510-8526 ◽  
Author(s):  
Baoqiang Xiang ◽  
Bin Wang ◽  
Juan Li ◽  
Ming Zhao ◽  
June-Yi Lee

Abstract Understanding the change of equatorial Pacific trade winds is pivotal for understanding the global mean temperature change and the El Niño–Southern Oscillation (ENSO) property change. The weakening of the Walker circulation due to anthropogenic greenhouse gas (GHG) forcing was suggested as one of the most robust phenomena in current climate models by examining zonal sea level pressure gradient over the tropical Pacific. This study explores another component of the Walker circulation change focusing on equatorial Pacific trade wind change. Model sensitivity experiments demonstrate that the direct/fast response due to GHG forcing is to increase the trade winds, especially over the equatorial central-western Pacific (ECWP) (5°S–5°N, 140°E–150°W), while the indirect/slow response associated with sea surface temperature (SST) warming weakens the trade winds. Further, analysis of the results from 19 models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and the Parallel Ocean Program (POP)–Ocean Atmosphere Sea Ice Soil (OASIS)–ECHAM model (POEM) shows that the projected weakening of the trades is robust only in the equatorial eastern Pacific (EEP) ( 5°S–5°N, 150°–80°W), but highly uncertain over the ECWP with 9 out of 19 CMIP5 models producing intensified trades. The prominent and robust weakening of EEP trades is suggested to be mainly driven by a top-down mechanism: the mean vertical advection of more upper-tropospheric warming downward to generate a cyclonic circulation anomaly in the southeast tropical Pacific. In the ECWP, the large intermodel spread is primarily linked to model diversity in simulating the relative warming of the equatorial Pacific versus the tropical mean sea surface temperature. The possible root causes of the uncertainty for the trade wind change are also discussed.


2014 ◽  
Vol 71 (2) ◽  
pp. 515-538 ◽  
Author(s):  
Nicolas Rochetin ◽  
Jean-Yves Grandpeix ◽  
Catherine Rio ◽  
Fleur Couvreux

Abstract This paper presents a stochastic triggering parameterization for deep convection and its implementation in the latest standard version of the Laboratoire de Météorologie Dynamique–Zoom (LMDZ) general circulation model: LMDZ5B. The derivation of the formulation of this parameterization and the justification, based on large-eddy simulation results, for the main hypothesis was proposed in Part I of this study. Whereas the standard triggering formulation in LMDZ5B relies on the maximum vertical velocity within a mean bulk thermal, the new formulation presented here (i) considers a thermal size distribution instead of a bulk thermal, (ii) provides a statistical lifting energy at cloud base, (iii) proposes a three-step trigger (appearance of clouds, inhibition crossing, and exceeding of a cross-section threshold), and (iv) includes a stochastic component. Here the complete implementation is presented, with its coupling to the thermal model used to treat shallow convection in LMDZ5B. The parameterization is tested over various cases in a single-column model framework. A sensitivity study to each parameter introduced is also carried out. The impact of the new triggering is then evaluated in the single-column version of LMDZ on several case studies and in full 3D simulations. It is found that the new triggering (i) delays deep convection triggering, (ii) suppresses it over oceanic trade wind cumulus zones, (iii) increases the low-level cloudiness, and (iv) increases the convective variability. The scale-aware nature of this parameterization is also discussed.


2020 ◽  
Vol 33 (24) ◽  
pp. 10407-10418
Author(s):  
Xiaoliang Song ◽  
Guang Jun Zhang

AbstractWarm SST bias underlying the spurious southern ITCZ has long been recognized as one of the main causes for double-ITCZ bias in coupled GCMs in the central Pacific. This study demonstrates that the NCAR CESM1.2 can still simulate significant double-ITCZ bias even with cold SST bias in the southern ITCZ region, indicating that warm SST bias is not a necessary condition for double-ITCZ bias in the central Pacific. Further analyses suggest that the equatorial cold tongue (ECT) biases play important roles in the formation of double-ITCZ bias in the central Pacific. The severe cold SST biases in the ECT region in the central Pacific may enhance the SST gradient between the ECT and southern ITCZ region, strengthening the lower-troposphere dynamical convergence and hence convection in the southern ITCZ region. The formation mechanism of excessive ECT bias is further investigated. It is shown that the cold SST biases in the ECT region can be largely attributed to the anomalous cooling tendency produced by the upper-ocean zonal advection due to overly strong zonal currents. In the ECT region, the westward ocean surface zonal current is driven by the equatorial easterly surface winds. It is shown that convection bias simulated by the atmospheric model in the equatorial Amazon region may lead to easterly wind bias in the downwind side (west) of convection region. The mean Walker circulation transports these easterly wind momentum anomalies downward and westward to the surface, resulting in the overly strong surface easterly wind in the central equatorial Pacific.


2012 ◽  
Vol 12 (5) ◽  
pp. 12229-12244 ◽  
Author(s):  
J. S. Hosking ◽  
M. R. Russo ◽  
P. Braesicke ◽  
J. A. Pyle

Abstract. We introduce a methodology to visualise rapid vertical and zonal tropical transport pathways. Using prescribed sea-surface temperatures in four monthly model integrations for 2005, preferred transport routes from the troposphere to the stratosphere are found in the model over the Maritime Continent (MC) in November and February, i.e., boreal winter. In these months, the ascending branch of the Walker Circulation over the MC is formed in conjunction with strong deep convection, allowing fast transport into the stratosphere. At the same time, the downwelling branch of the Walker Circulation is enhanced over the East Pacific, compared to other months in 2005, reducing locally the upward transport from emissions below. We conclude that the Walker circulation plays an important role in the seasonality of fast tropical transport from the troposphere to the stratosphere and so impacts at the same time the potential supply of surface emissions.


2012 ◽  
Vol 12 (20) ◽  
pp. 9791-9797 ◽  
Author(s):  
J. S. Hosking ◽  
M. R. Russo ◽  
P. Braesicke ◽  
J. A. Pyle

Abstract. We introduce a methodology to visualise rapid vertical and zonal tropical transport pathways. Using prescribed sea-surface temperatures in four monthly model integrations for 2005, we characterise preferred transport routes from the troposphere to the stratosphere in a high resolution climate model. Most efficient transport is modelled over the Maritime Continent (MC) in November and February, i.e., boreal winter. In these months, the ascending branch of the Walker Circulation over the MC is formed in conjunction with strong deep convection, allowing fast transport into the stratosphere. In the model the upper tropospheric zonal winds associated with the Walker Circulation are also greatest in these months in agreement with ERA-Interim reanalysis data. We conclude that the Walker circulation plays an important role in the seasonality of fast tropical transport from the lower and middle troposphere to the upper troposphere and so impacts at the same time the potential supply of surface emissions to the tropical tropopause layer (TTL) and subsequently to the stratosphere.


2005 ◽  
Vol 18 (20) ◽  
pp. 4216-4234 ◽  
Author(s):  
Matthew E. Peters ◽  
Christopher S. Bretherton

Abstract Cloud–climate feedbacks between precipitation, radiation, circulation strength, atmospheric temperature and moisture, and ocean temperature are studied with an idealized model of the Walker circulation in a nonrotating atmosphere coupled to an ocean mixed layer. This study has two main purposes: 1) to formulate a conceptual framework that includes the dominant feedbacks between clouds and a large-scale divergent circulation; and 2) to use this framework to investigate the sensitivity of the climate system to these interactions. Two cloud types—high, convective anvils and low, nonprecipitating stratus—are included and coupled to the large-scale dynamics. The atmosphere is coupled to an ocean mixed layer via a consistent surface energy budget. Analytic approximations with a simplified radiation scheme are derived and used to explain numerical results with a more realistic radiation scheme. The model simplicity allows interactions between different parts of the ocean–atmosphere system to be cleanly elucidated, yet also allows the areal extent of deep convection and the horizontal structure of the Walker circulation to be internally determined by the model. Because of their strong top-of-atmosphere radiative cancellation, high clouds are found to have little overall effect on the circulation strength and convective area fraction. Instead, to leading order, these are set by the horizontally varying ocean heat transport and clear-sky radiative fluxes. Low clouds are found to cool both the ocean and atmosphere, to slightly increase the circulation strength, and to shrink the convective area significantly. The climate is found to be less sensitive to doubled greenhouse gas experiments with low clouds than without.


2017 ◽  
Vol 30 (18) ◽  
pp. 7423-7439 ◽  
Author(s):  
Guyu Cao ◽  
Guang J. Zhang

Abstract Observational studies suggest that the vertical structure of diabatic heating is important to MJO development. In particular, the lack of a top-heavy heating profile was believed to be responsible for poor MJO simulations in global climate models. In this work, the role of the vertical heating profile in MJO simulation is investigated by modifying the convective heating profile to different shapes, from top-heavy heating to bottom cooling, to mimic mesoscale heating in the NCAR Community Atmosphere Model, version 5.3 (CAM5.3). Results suggest that incorporating a mesoscale stratiform heating structure can significantly improve the MJO simulation. By artificially adding stratiform-like heating and cooling in the experiments, many observed features of MJO are reproduced, including clear eastward propagation, a westward-tilted vertical structure of MJO-scale anomalies of dynamic and thermodynamic fields, and strong 20–80-day spectral power. Further analysis shows an abundance of shallow convection ahead of MJO deep convection, confirming the role of shallow convection in preconditioning the atmosphere by moistening the lower troposphere ahead of deep convection during the MJO life cycle. Additional experiments show that lower-level cooling contributes more to improving the MJO simulation. All these features are lacking in the control simulation, suggesting that the mesoscale stratiform heating, especially its lower-level cooling component, is important to MJO simulation.


2008 ◽  
Vol 65 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Ian Folkins ◽  
S. Fueglistaler ◽  
G. Lesins ◽  
T. Mitovski

Abstract Deep convective tropical systems are strongly convergent in the midtroposphere. Horizontal wind measurements from a variety of rawinsonde arrays in the equatorial Pacific and Caribbean are used to calculate the mean dynamical divergence profiles of large-scale arrays (≥1000 km in diameter) in actively convecting regions. Somewhat surprisingly, the magnitude of the midtropospheric divergence calculated from these arrays is usually small. In principle, the midlevel convergence of deep convective systems could be balanced on larger scales either by a vertical variation in the radiative mass flux of the background clear sky atmosphere, or by a divergence from shallow cumuli. The vertical variation of the clear sky mass flux in the midtroposphere is small, however, so that the offsetting divergence must be supplied by shallow cumuli. On spatial scales of ∼1000 km, the midlevel convergent inflow toward deep convection appears to be internally compensated, or “screened,” by a divergent outflow from surrounding precipitating shallow convection. Deep convective systems do not induce a large-scale inflow of midlevel air toward actively convecting regions from the rest of the tropics, but instead help generate a secondary low-level circulation, in which the net downward mass flux from mesoscale and convective-scale downdrafts is balanced by a net upward mass flux from precipitating shallow cumuli. The existence of this circulation is consistent with observational evidence showing that deep and shallow convection are spatiotemporally coupled on a wide range of both spatial and temporal scales. One of the mechanisms proposed for coupling shallow convection to deep convection is the tendency for deep convection to cool the lower troposphere. The authors use radiosonde temperature profiles and the Tropical Rainfall Measuring Mission (TRMM) 3B42 gridded rainfall product to argue that the distance over which deep convection cools the lower troposphere is approximately 1000 km.


2016 ◽  
Vol 113 (42) ◽  
pp. 11732-11737 ◽  
Author(s):  
Nan Chen ◽  
Andrew J. Majda

The Central Pacific El Niño (CP El Niño) has been frequently observed in recent decades. The phenomenon is characterized by an anomalous warm sea surface temperature (SST) confined to the central Pacific and has different teleconnections from the traditional El Niño. Here, simple models are developed and shown to capture the key mechanisms of the CP El Niño. The starting model involves coupled atmosphere–ocean processes that are deterministic, linear, and stable. Then, systematic strategies are developed for incorporating several major mechanisms of the CP El Niño into the coupled system. First, simple nonlinear zonal advection with no ad hoc parameterization of the background SST gradient is introduced that creates coupled nonlinear advective modes of the SST. Secondly, due to the recent multidecadal strengthening of the easterly trade wind, a stochastic parameterization of the wind bursts including a mean easterly trade wind anomaly is coupled to the simple atmosphere–ocean processes. Effective stochastic noise in the wind burst model facilitates the intermittent occurrence of the CP El Niño with realistic amplitude and duration. In addition to the anomalous warm SST in the central Pacific, other major features of the CP El Niño such as the rising branch of the anomalous Walker circulation being shifted to the central Pacific and the eastern Pacific cooling with a shallow thermocline are all captured by this simple coupled model. Importantly, the coupled model succeeds in simulating a series of CP El Niño that lasts for 5 y, which resembles the two CP El Niño episodes during 1990–1995 and 2002–2006.


Sign in / Sign up

Export Citation Format

Share Document