scholarly journals The Operational Impact of QuikSCAT Winds in Perth, Australia: Examples and Limitations

2008 ◽  
Vol 23 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Lance M. Leslie ◽  
Bruce W. Buckley ◽  
Mark Leplastrier

Abstract The preparation of accurate operational weather forecasts and the timely issuance of severe marine weather and ocean warnings and advisories for major oceanic weather systems impacting both coastal areas and the open ocean are major forecasting problems facing the Australian Bureau of Meteorology’s Regional Forecast Centre (RFC) and its collocated Tropical Cyclone Warning Centre (TCWC) in Perth, Western Australia. The region of responsibility for the Perth RFC is vast, covering a large portion of the southeast Indian and Southern Oceans, both of which are extremely data sparse, especially for near-surface marine wind data. Given that these coastline and open-ocean areas are subject to some of the world’s most intense tropical cyclones, rapidly intensifying midlatitude cyclones, and powerful cold fronts, there is now a heavy reliance upon NASA Quick Scatterometer (QuikSCAT) data for both routine and severe weather warning forecasts. The focus of this note is on the role of QuikSCAT data in the Perth RFC for the accurate and early detection of maritime severe weather systems, both tropical and extratropical. First, the role of QuikSCAT data is described, and then three cases are presented in which the QuikSCAT data were pivotal in providing forecast guidance. The cases are a severe tropical cyclone in its development phase off the northwest coast of Australia, a strong southeast Indian Ocean cold front, and an explosively developing midlatitude Southern Ocean cyclone. In each case, the Perth RFC would have been unable to provide early and high-quality operational forecast and warning guidance without the timely availability of the QuikSCAT surface wind data.

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 766
Author(s):  
Yi Jiang ◽  
Shuai Han ◽  
Chunxiang Shi ◽  
Tao Gao ◽  
Honghui Zhen ◽  
...  

Near-surface wind data are particularly important for Hainan Island and the South China Sea, and there is a wide range of wind data sources. A detailed understanding of the reliability of these datasets can help us to carry out related research. In this study, the hourly near-surface wind data from the High-Resolution China Meteorological Administration (CMA) Land Data Assimilation System (HRCLDAS) and the fifth-generation ECMWF atmospheric reanalysis data (ERA5) were evaluated by comparison with the ground automatic meteorological observation data for Hainan Island and the South China Sea. The results are as follows: (1) the HRCLDAS and ERA5 near-surface wind data trend was basically the same as the observation data trend, but there was a smaller bias, smaller root-mean-square errors, and higher correlation coefficients between the near-surface wind data from HRCLDAS and the observations; (2) the quality of HRCLDAS and ERA5 near-surface wind data was better over the islands of the South China Sea than over Hainan Island land. However, over the coastal areas of Hainan Island and island stations near Sansha, the quality of the HRCLDAS near-surface wind data was better than that of ERA5; (3) the quality of HRCLDAS near-surface wind data was better than that of ERA5 over different types of landforms. The deviation of ERA5 and HRCLDAS wind speed was the largest along the coast, and the quality of the ERA5 wind direction data was poorest over the mountains, whereas that of HRCLDAS was poorest over hilly areas; (4) the accuracy of HRCLDAS at all wind levels was higher than that of ERA5. ERA5 significantly overestimated low-grade winds and underestimated high-grade winds. The accuracy of HRCLDAS wind ratings over the islands of the South China Sea was significantly higher than that over Hainan Island land, especially for the higher wind ratings; and (5) in the typhoon process, the simulation of wind by HRCLDAS was closer to the observations, and its simulation of higher wind speeds was more accurate than the ERA5 simulations.


Author(s):  
Yuqing Wang ◽  
Yuanlong Li ◽  
Jing Xu

AbstractIn this study, the boundary-layer tangential wind budget equation following the radius of maximum wind, together with an assumed thermodynamical quasi-equilibrium boundary layer is used to derive a new equation for tropical cyclone (TC) intensification rate (IR). A TC is assumed to be axisymmetric in thermal wind balance with eyewall convection becoming in moist slantwise neutrality in the free atmosphere above the boundary layer as the storm intensifies as found recently based on idealized numerical simulations. An ad-hoc parameter is introduced to measure the degree of congruence of the absolute angular momentum and the entropy surfaces. The new IR equation is evaluated using results from idealized ensemble full-physics axisymmetric numerical simulations. Results show that the new IR equation can reproduce the time evolution of the simulated TC intensity. The new IR equation indicates a strong dependence of IR on both TC intensity and the corresponding maximum potential intensity (MPI). A new finding is the dependence of TC IR on the square of the MPI in terms of the near-surface wind speed for any given relative intensity. Results from some numerical integrations of the new IR equation also suggest the finite-amplitude nature of TC genesis. In addition, the new IR theory is also supported by some preliminary results based on best-track TC data over the North Atlantic and eastern and western North Pacific. Compared with the available time-dependent theories of TC intensification, the new IR equation can provide a realistic intensity-dependent IR during weak intensity stage as in observations.


2009 ◽  
Vol 48 (3) ◽  
pp. 534-552 ◽  
Author(s):  
Bo Yu ◽  
Arindam Gan Chowdhury

Abstract Gust factors are used to convert peak wind speeds averaged over a relatively short period (e.g., 3 s) to mean wind speeds averaged over a relatively long reference period (e.g., 1 h) or vice versa. Such conversions are needed for engineering, climatological, or forecasting purposes. In this paper, gust factors in tropical cyclone (TC) winds are estimated from Florida Coastal Monitoring Program (FCMP) observations of near-surface TC wind speeds representative of flow over the sea surface and over open flat terrain in coastal areas. Comparisons are made with gust factors in extratropical winds over open flat terrain that are available in the literature. According to the results of the study, for gust durations of less than 20 s, the Durst model underestimates, and the Krayer–Marshall model overestimates, gust factors of TC winds over surfaces with roughness specified in the American Society of Civil Engineers (ASCE) 7 Standard Commentary as typical of open terrain. Consideration should be given to these findings when updating the gust factors provided in the ASCE 7 Standard Commentary. The study also compares gust factors in TC winds obtained from FCMP data with gust factors in extratropical winds obtained from near-surface wind data collected at eight Automated Surface Observing System (ASOS) stations and concludes that, depending upon terrain roughness, gust factors in TC winds can be higher by about 10%–15% than gust factors in extratropical winds. The study also presents FCMP-based estimates of turbulence intensities and their variability and shows that turbulence intensities in TC winds increase as the terrain roughness increases. The longitudinal turbulence intensity can vary from storm to storm and can exceed its typical value by as much as 20%. It is recommended that future TC wind measurement campaigns obtain temperature data usable for stratification estimation purposes, as well as information on waves and storm surge upwind of the anemometer towers.


2015 ◽  
Vol 15 (7) ◽  
pp. 3785-3801 ◽  
Author(s):  
B. W. Butler ◽  
N. S. Wagenbrenner ◽  
J. M. Forthofer ◽  
B. K. Lamb ◽  
K. S. Shannon ◽  
...  

Abstract. A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., ~ 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The wind data are presented in terms of four flow regimes: upslope, afternoon, downslope, and a synoptically driven regime. There were notable differences in the data collected from the two terrain types. For example, wind speeds on the isolated mountain increased with distance upslope during upslope flow, but generally decreased with distance upslope at the river canyon site during upslope flow. In a downslope flow, wind speed did not have a consistent trend with position on the isolated mountain, but generally increased with distance upslope at the river canyon site. The highest measured speeds occurred during the passage of frontal systems on the isolated mountain. Mountaintop winds were often twice as high as wind speeds measured on the surrounding plain. The highest speeds measured in the river canyon occurred during late morning hours and were from easterly down-canyon flows, presumably associated with surface pressure gradients induced by formation of a regional thermal trough to the west and high pressure to the east. Under periods of weak synoptic forcing, surface winds tended to be decoupled from large-scale flows, and under periods of strong synoptic forcing, variability in surface winds was sufficiently large due to terrain-induced mechanical effects (speed-up over ridges and decreased speeds on leeward sides of terrain obstacles) that a large-scale mean flow would not be representative of surface winds at most locations on or within the terrain feature. These findings suggest that traditional operational weather model (i.e., with numerical grid resolutions of around 4 km or larger) wind predictions are not likely to be good predictors of local near-surface winds on sub-grid scales in complex terrain. Measurement data can be found at http://www.firemodels.org/index.php/windninja-introduction/windninja-publications.


2010 ◽  
Vol 138 (8) ◽  
pp. 3207-3223 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Wei-Ting Fang ◽  
Russell L. Elsberry

Abstract A tropical cyclone (TC) size parameter, which is defined here as the radius of 15 m s−1 near-surface wind speed (R15), is calculated for 145 TCs in the western North Pacific during 2000–05 based on QuikSCAT oceanic winds. For the 73 TCs that intensified to typhoon intensity during their lifetimes, the 33% and 67% respective percentiles of R15 at tropical storm intensity and at typhoon intensity are used to categorize small, medium, and large TCs. Whereas many of the small TCs form from an easterly wave synoptic pattern, the monsoon-related formation patterns are favorable for forming medium to large TCs. Most of these 73 TCs stay in the same size category during intensification, which implies specific physical mechanisms for maintaining TC size in the basin. The 18 persistently large TCs from the tropical storm to the typhoon stage mostly have northwestward or north-northwestward tracks, while the 16 persistently small TCs either move westward–northwestward in lower latitudes or develop at higher latitudes with various track types. For the large TCs, strong low-level southwesterly winds exist in the outer core region south of the TC center throughout the intensification period. The small TCs are more influenced by the subtropical high during intensification. The conclusion is that it is the low-level environment that determines the difference between large and small size storms during the early intensification period in the western North Pacific.


2015 ◽  
Vol 30 (3) ◽  
pp. 692-701 ◽  
Author(s):  
Jing Xu ◽  
Yuqing Wang

Abstract The dependence of tropical cyclone (TC) intensification rate IR on storm intensity and size was statistically analyzed for North Atlantic TCs during 1988–2012. The results show that IR is positively (negatively) correlated with storm intensity (the maximum sustained near-surface wind speed Vmax) when Vmax is below (above) 70–80 knots (kt; 1 kt = 0.51 m s−1), and negatively correlated with storm size in terms of the radius of maximum wind (RMW), the average radius of gale-force wind (AR34), and the outer-core wind skirt parameter DR34 (=AR34 − RMW). The turning point for Vmax of 70–80 kt is explained as a balance between the potential intensification and the maximum potential intensity (MPI). The highest IR occurs for Vmax = 80 kt, RMW ≤ 40 km, and AR34 = DR34 = 150 km. The high frequency of occurrence of intensifying TCs occurs for Vmax ≤ 80 kt and RMW between 20 and 60 km, AR34 ≤ 200 km, and DR34 ≤ 150 km. Rapid intensification (RI) often occurs in a relatively narrow parameter space in storm intensity and both inner- and outer-core sizes. In addition, a theoretical basis for the intensity dependency has also been provided based on a previously constructed simplified dynamical system for TC intensity prediction.


2019 ◽  
Vol 19 (4) ◽  
pp. 2477-2487 ◽  
Author(s):  
Liguang Wu ◽  
Qingyuan Liu ◽  
Yubin Li

Abstract. A tornado-scale vortex in the tropical cyclone (TC) boundary layer (TCBL) has been observed in intense hurricanes and the associated intense turbulence poses a severe threat to the manned research aircraft when it penetrates hurricane eyewalls at a lower altitude. In this study, a numerical experiment in which a TC evolves in a large-scale background over the western North Pacific is conducted using the Advanced Weather Research and Forecast (WRF) model by incorporating the large-eddy simulation (LES) technique. The simulated tornado-scale vortex shows features similar to those revealed with limited observational data, including the updraft–downdraft couplet, the sudden jump of wind speeds, the location along the inner edge of the eyewall, and the small horizontal scale. It is suggested that the WRF–LES framework can successfully simulate the tornado-scale vortex with grids at a resolution of 37 m that cover the TC eye and eyewall. The simulated tornado-scale vortex is a cyclonic circulation with a small horizontal scale of ∼1 km in the TCBL. It is accompanied by strong updrafts (more than 15 m s−1) and large vertical components of relative vorticity (larger than 0.2 s−1). The tornado-scale vortex favorably occurs at the inner edge of the enhanced eyewall convection or rainband within the saturated, high-θe layer, mostly below an altitude of 2 km. In nearly all the simulated tornado-scale vortices, the narrow intense updraft is coupled with the relatively broad downdraft, constituting one or two updraft–downdraft couplets, as observed by the research aircraft. The presence of the tornado-scale vortex also leads to significant gradients in the near-surface wind speed and wind gusts.


2018 ◽  
Author(s):  
Liguang Wu ◽  
Qingyuan Liu ◽  
Yubing Li

Abstract. The tornado-scale vortex in the tropical cyclone (TC) boundary layer (TCBL) has been observed in intense hurricanes and the associated intense turbulence poses a severe threat to the manned research aircraft when it penetrates hurricane eyewalls at a lower altitude. In this study, a numerical experiment in which a TC evolves in a large-scale background over the western North Pacific is conducted using the Advanced Weather Research and Forecast (WRF) model by incorporating the large eddy simulation (LES) technique. The simulated tornado-scale vortex shows the similar features as revealed with the limited observational data, including the updraft/downdraft couplet, the sudden jump of wind speeds, the favorable location, and the horizontal scale. It is suggested that the WRF-LES framework can successfully simulate the tornado-scale vortex with the grids at the resolution of 37 m that cover the TC eye and eyewall. The simulated tornado-scale vortex is a cyclonic circulation with a small horizontal scale of ~ 1 km in the TCBL. It is accompanied by strong updrafts (more than 15 m s−1) and large vertical components of relative vorticity (larger than 0.2 s−1). The tornado-scale vortex favorably occurs at the inner edge of the enhanced eyewall convection or rainband within the saturated, high-θe layer, mostly below the altitude of 2 km. Nearly in all the simulated tornado-scale vortices, the narrow intense updraft is coupled with the relatively broad downdraft, constituting one or two updraft/downdraft couplets or horizontal rolling vortices, as observed by the research aircraft. The presence of the tornado-scale vortex also leads to significant gradients in the near surface wind speed and wind gusts.


2015 ◽  
Vol 9 (4) ◽  
pp. 1415-1426 ◽  
Author(s):  
T. Zwinger ◽  
T. Malm ◽  
M. Schäfer ◽  
R. Stenberg ◽  
J. C. Moore

Abstract. We model the role of katabatic winds in the formation and maintenance of a blue ice area in Scharffenbergbotnen valley, Antarctica, using the finite element code Elmer. The high-horizontal-resolution (50–200 m) numerical simulations of the local wind flow from katabatic wind fronts show high spatial variability in wind-impact patterns and good congruence between places with high near-surface wind speeds and the blue ice area. In addition we perform wind simulations on an altered glacier geometry that resembles the thicker ice cover at the Late Glacial Maximum (LGM). These simulations indicate that the pronounced spatial wind-impact patterns depend on present-day geometry and did not occur during the LGM. This leads to the conclusion that the formation of the inner blue ice area of the Scharffenbergbotnen valley started only after the lowering of the ice surface, i.e. after the LGM. Experiments with smoothed surface topography suggest that detailed positions of the high wind regions, and hence individual blue ice fields, may have varied as the ice sheet lowered. The simulation results obtained with the present-day geometry were fortuitously confirmed by the destruction of a field camp located in a high-wind-speed area and its subsequent redistribution to low-velocity areas. The experiments and the field observations are consistent with localized violent katabatic events rather than synoptic-scale storms, playing the dominant role in the formation and maintenance of this and perhaps many blue ice areas.


Sign in / Sign up

Export Citation Format

Share Document