scholarly journals Interdecadal Variation of ENSO Predictability in Multiple Models

2008 ◽  
Vol 21 (18) ◽  
pp. 4811-4833 ◽  
Author(s):  
Youmin Tang ◽  
Ziwang Deng ◽  
Xiaobing Zhou ◽  
Yanjie Cheng ◽  
Dake Chen

Abstract In this study, El Niño–Southern Oscillation (ENSO) retrospective forecasts were performed for the 120 yr from 1881 to 2000 using three realistic models that assimilate the historic dataset of sea surface temperature (SST). By examining these retrospective forecasts and corresponding observations, as well as the oceanic analyses from which forecasts were initialized, several important issues related to ENSO predictability have been explored, including its interdecadal variability and the dominant factors that control the interdecadal variability. The prediction skill of the three models showed a very consistent interdecadal variation, with high skill in the late nineteenth century and in the middle–late twentieth century, and low skill during the period from 1900 to 1960. The interdecadal variation in ENSO predictability is in good agreement with that in the signal of interannual variability and in the degree of asymmetry of ENSO system. A good relationship was also identified between the degree of asymmetry and the signal of interannual variability, and the former is highly related to the latter. Generally, the high predictability is attained when ENSO signal strength and the degree of asymmetry are enhanced, and vice versa. The atmospheric noise generally degrades overall prediction skill, especially for the skill of mean square error, but is able to favor some individual prediction cases. The possible reasons why these factors control ENSO predictability were also discussed.

2008 ◽  
Vol 21 (2) ◽  
pp. 230-247 ◽  
Author(s):  
Youmin Tang ◽  
Richard Kleeman ◽  
Andrew M. Moore

Abstract In this study, ensemble predictions of the El Niño–Southern Oscillation (ENSO) were conducted for the period 1981–98 using two hybrid coupled models. Several recently proposed information-based measures of predictability, including relative entropy (R), predictive information (PI), predictive power (PP), and mutual information (MI), were explored in terms of their ability of estimating a priori the predictive skill of the ENSO ensemble predictions. The emphasis was put on examining the relationship between the measures of predictability that do not use observations, and the model prediction skills of correlation and root-mean-square error (RMSE) that make use of observations. The relationship identified here offers a practical means of estimating the potential predictability and the confidence level of an individual prediction. It was found that the MI is a good indicator of overall skill. When it is large, the prediction system has high prediction skill, whereas small MI often corresponds to a low prediction skill. This suggests that MI is a good indicator of the actual skill of the models. The R and PI have a nearly identical average (over all predictions) as should be the case in theory. Comparing the different information-based measures reveals that R is a better predictor of prediction skill than PI and PP, especially when correlation-based metrics are used to evaluate model skill. A “triangular relationship” emerges between R and the model skill, namely, that when R is large, the prediction is likely to be reliable, whereas when R is small the prediction skill is quite variable. A small R is often accompanied by relatively weak ENSO variability. The possible reasons why R is superior to PI and PP as a measure of ENSO predictability will also be discussed.


2011 ◽  
Vol 24 (1) ◽  
pp. 298-314 ◽  
Author(s):  
Youmin Tang ◽  
Ziwang Deng

Abstract In this study, a breeding analysis was conducted for a hybrid coupled El Niño–Southern Oscillation (ENSO) model that assimilated a historic dataset of sea surface temperature (SST) for the 120 yr between 1881 and 2000. Meanwhile, retrospective ENSO forecasts were performed for the same period. For a given initial state, 15 bred vectors (BVs) of both SST and upper-ocean heat content (HC) were derived. It was found that the average structure of the 15 BVs was insensitive to the initial states and independent of season and ENSO phase. The average structure of the BVs shared many features already seen in both the final patterns of leading singular vectors and the ENSO BVs of other models. However, individual BV patterns were quite different from case to case. The BV rate (the average cumulative growth rate of BVs) varied seasonally, and the maximum value appeared at the time when the model ran through the boreal spring and summer. It was also sensitive to the strength of the ENSO signal (i.e., the stronger ENSO signal, the smaller the BV rate). Furthermore, ENSO predictability was explored using BV analysis. Emphasis was placed on the relationship between BVs, which are able to characterize potential predictability without requiring observations, and actual prediction skills, which make use of real observations. The results showed that the relative entropy, defined using breeding vectors, was a good measure of potential predictability. Large relative entropy often leads to a good prediction skill; however, when the relative entropy was small, the prediction skill seemed much more variable. At decadal/interdecadal scales, the variations in prediction skills correlated with relative entropy.


2018 ◽  
Vol 31 (18) ◽  
pp. 7441-7457 ◽  
Author(s):  
Bo Sun ◽  
Huijun Wang

This study analyzes the interannual and interdecadal variability of spring and summer precipitation over the Three River Source (TRS) region in China using four datasets. A general consistency is revealed among the four datasets with regard to the interannual and interdecadal variability of TRS precipitation during 1979–2015, demonstrating a confidence of the four datasets in representing the precipitation variability over the TRS region. The TRS spring and summer precipitation shows distinct interannual and interdecadal variability, with an overall increasing trend in the spring precipitation and an interdecadal oscillation in the summer precipitation. The regimes associated with the interannual variability of TRS spring and summer precipitation are further investigated. The interannual variability of TRS spring precipitation is essentially modulated by an anomalous easterly water vapor transport (WVT) branch associated with the leading mode of Eurasian spring circulation. El Niño–Southern Oscillation (ENSO) may affect the interannual variability of TRS spring precipitation by causing southerly WVT anomalies toward the TRS region. The interannual variability of TRS summer precipitation is essentially modulated by an anomalous southwesterly WVT branch over the TRS region, which is mainly associated with a Eurasian wave train connected with the summer North Atlantic Oscillation. A strong East Asian summer monsoon and an El Niño–decaying summer may also contribute to the southwesterly WVT anomalies over the TRS region.


1990 ◽  
Vol 64 (4) ◽  
pp. 585-629 ◽  
Author(s):  
Mira Wilkins

A great deal of attention has recently been focused on the extent of Japanese direct investment in the United States. In the following historical survey, Professor Wilkins details the size and scope of these investments from the late nineteenth century, showing that Japanese involvements in America have deep historical roots. At the same time, she analyzes the ways in which late twentieth century Japanese direct investment differs from the earlier phenomenon and attempts to explain why it has aroused such concern among both business leaders and the general public.


2013 ◽  
Vol 52 (11) ◽  
pp. 2396-2409 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Warren E. Heilman ◽  
Joseph J. Charney

AbstractThe Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The results show that the first three HI empirical orthogonal function modes are related respectively to El Niño–Southern Oscillation (ENSO), the Arctic Oscillation (AO), and the interdecadal sea surface temperature variation over the tropical Pacific Ocean. During the negative ENSO phase, an anomalous ridge (trough) is evident over the western (eastern) United States, with warm/dry weather and more days with high HI values in the western and southeastern United States. During the negative phase of the AO, an anomalous trough is found over the western United States, with wet/cool weather and fewer days with high HI, while an anomalous ridge occurs over the southern United States–northern Mexico, with an increase in the number of days with high HI. After the early 1990s, the subtropical high over the eastern Pacific Ocean and the Bermuda high were strengthened by a wave train that was excited over the tropical western Pacific Ocean and resulted in warm/dry conditions over the southwestern United States and western Mexico and wet weather in the southeastern United States. The above conditions are reversed during the positive phase of ENSO and AO and before the early 1990s.


2012 ◽  
Vol 12 (11) ◽  
pp. 30825-30867
Author(s):  
G. Kirgis ◽  
T. Leblanc ◽  
I. S. McDermid ◽  
T. D. Walsh

Abstract. The Jet Propulsion Laboratory (JPL) lidars, at the Mauna Loa Observatory, Hawaii (MLO, 19.5° N, 155.6° W) and the JPL Table Mountain Facility (TMF, California, 34.5° N, 117.7° W), have been measuring vertical profiles of stratospheric ozone routinely since the early 1990's and late-1980s respectively. Interannual variability of ozone above these two sites was investigated using a multi-linear regression analysis on the deseasonalized monthly mean lidar and satellite time-series at 1 km intervals between 20 and 45 km from January 1995 to April 2011, a period of low volcanic aerosol loading. Explanatory variables representing the 11-yr solar cycle, the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, the Eliassen–Palm flux, and horizontal and vertical transport were used. A new proxy, the mid-latitude ozone depleting gas index, which shows a decrease with time as an outcome of the Montreal Protocol, was introduced and compared to the more commonly used linear trend method. The analysis also compares the lidar time-series and a merged time-series obtained from the space-borne stratospheric aerosol and gas experiment II, halogen occultation experiment, and Aura-microwave limb sounder instruments. The results from both lidar and satellite measurements are consistent with recent model simulations which propose changes in tropical upwelling. Additionally, at TMF the ozone depleting gas index explains as much variance as the Quasi-Biennial Oscillation in the upper stratosphere. Over the past 17 yr a diminishing downward trend in ozone was observed before 2000 and a net increase, and sign of ozone recovery, is observed after 2005. Our results which include dynamical proxies suggest possible coupling between horizontal transport and the 11-yr solar cycle response, although a dataset spanning a period longer than one solar cycle is needed to confirm this result.


2014 ◽  
Vol 86 (3) ◽  
pp. 195-209
Author(s):  
Michael Strickland

This article deals with the trials of two evangelical scholars, one from the late nineteenth century, Alexander B. Bruce, and the other from the late twentieth, Robert Gundry. Both faced accusation and judgment from their peers because of their redaction-critical remarks about the synoptic gospels. Bruce was tried by the Free Church of Scotland, while Gundry’s membership in the Evangelical Theological Society was challenged. After considering the cases of both, consideration is given to potential lessons that evangelical scholars who use redactioncritical methods may learn from the experiences of both men.


2021 ◽  
Author(s):  
◽  
Aitana Forcén-Vázquez

<p>Subantarctic New Zealand is an oceanographycally dynamic region with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. This thesis investigates the ocean structure of the Campbell Plateau and the surrounding New Zealand subantarctic, including the spatial, seasonal, interannual and longer term variability over the ocean properties, and their connection to atmospheric variability using a combination of in-situ oceanographic measurements and remote sensing data.  The spatial and seasonal oceanographic structure in the New Zealand subantarctic region was investigated by analysing ten high resolution Conductivity Temperature and Depth (CTD) datasets, sampled during oceanographic cruises from May 1998 to February 2013. Position of fronts, water mass structure and changes over the seasons show a complex structure around the Campbell Plateau combining the influence of subtropical and subantarctic waters.  The spatial and interannual variability on the Campbell Plateau was described by analysing approximately 70 low resolution CTD profiles collected each year in December between 2002 and 2009. Conservative temperature and absolute salinity profiles reveal high variability in the upper 200m of the water column and a homogeneous water column from 200 to 600m depth. Temperature variability of about 0.7 °C, on occasions between consecutive years, is observed down to 900m depth. The presence of Subantarctic Mode Water (SAMW) on the Campbell Plateau is confirmed and Antarctic Intermediate Water (AAIW) reported for the first time in the deeper regions around the edges of the plateau.  Long-term trends and variability over the Campbell Plateau were investigated by analysing satellite derived Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) time series. Links to large scale atmospheric processes are also explored through correlation with the Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). SST shows a strong seasonality and interannual variability which is linked to local winds, but no significant trend is found. The SLA over the Campbell Plateau has increased at a rate of 5.2 cm decade⁻¹ in the last two decades. The strong positive trend in SLA appears to be a combination of the response of the ocean to wind stress curl (Ekman pumping), thermal expansion and ocean mass redistribution via advection amongst others.  These results suggest that the variability on the Campbell Plateau is influenced by the interaction of the STF and the SAF. The STF influence reaches the limit of the SAF over the western Campbell Plateau and the SAF influence extends all around the plateau. Results also suggest different connections between the plateau with the surrounding oceans, e.g., along the northern edge with the Bounty Trough and via the southwest edge with the SAF. A significant correlation with SOI and little correlation with SAM suggest a stronger response to tropically driven processes in the long-term variability on the Campbell Plateau.  The results of this thesis provide a new definitive assessment of the circulation, water masses and variability of the Campbell Plateau on mean, annual, and interannual time scales which will support research in other disciplines such as palaeoceanography, fisheries management and climate.</p>


Author(s):  
Leah Price

This chapter suggests that two phenomena that usually get explained in terms of the rise of electronic media in the late twentieth century—the dematerialization of the text and the disembodiment of the reader—have more to do with two much earlier developments. One is legal: the 1861 repeal of the taxes previously imposed on all paper except that used for printing bibles. The other is technological: the rise first of wood-pulp paper in the late nineteenth century and then of plastics in the twentieth. The chapter then looks at Henry Mayhew's London Labour and the London Poor (1861–62), the loose, baggy ethnography of the urban underclass that swelled out of a messy series of media. Mayhew's “cyclopaedia of the industry, the want, and the vice of the great Metropolis” so encyclopedically catalogs the uses to which used paper can be turned.


Author(s):  
Gavin Miller

For the purposes of this book, science fiction is defined broadly in the terms advanced by Darko Suvin, with a focus on the genre from the late nineteenth century onwards. Psychology is conceived as the modern Western discipline, running from the origins of experimental psychology in the late nineteenth century to the ascendance of neuroscience as a disciplinary rival in the late twentieth century. Five different functions for psychological discourses in science fiction are proposed. The didactic-futurological function educates the non-specialist through extrapolation of psychological technologies, teaching within the context of futurological forecasting. The utopian function anchors in historical possibility the imagining of a currently non-existent society, whether utopian or dystopian. The cognitive-estranging function defamiliarizes and denaturalizes social reality by extrapolating current social tendencies and/or construct unsettling fictional analogues of the reader’s world. The metafictional function self-consciously thematizes within narrative fiction the psychological origins, nature, and function of science fiction as a genre. The reflexive function addresses the construction of individuals and groups who have reflexively adopted the ‘truth’ of psychological knowledge.


Sign in / Sign up

Export Citation Format

Share Document