Nonlinear Climate and Hydrological Responses to Aerosol Effects

2009 ◽  
Vol 22 (6) ◽  
pp. 1329-1339 ◽  
Author(s):  
Yi Ming ◽  
V. Ramaswamy

Abstract The equilibrium temperature and hydrological responses to the total aerosol effects (i.e., direct, semidirect, and indirect effects) are studied using a modified version of the Geophysical Fluid Dynamics Laboratory atmosphere general circulation model (AM2.1) coupled to a mixed layer ocean model. The treatment of aerosol–liquid cloud interactions and associated indirect effects is based upon a prognostic scheme of cloud droplet number concentration, with an explicit representation of cloud condensation nuclei activation involving sulfate, organic carbon, and sea salt aerosols. Increasing aerosols from preindustrial (1860) to present-day (1990) levels leads to a decrease of 1.9 K in the global annual mean surface temperature. The cooling is relatively strong over the Northern Hemisphere midlatitude land owing to the high aerosol burden there, while being amplified at high latitudes. When being subject to aerosols and radiatively active gases (i.e., well-mixed greenhouse gases and ozone) simultaneously, the model climate behaves nonlinearly; the simulated increase in surface temperature (0.55 K) is considerably less than the arithmetic sum of separate aerosol and gas effects (0.86 K). The thermal responses are accompanied by the nonlinear changes in cloud fields, which are amplified owing to the surface albedo feedback at high latitudes. The two effects completely offset each other in the Northern Hemisphere, while gas effect is dominant in the Southern Hemisphere. Both factors are crucial in shaping the regional responses. Interhemispheric asymmetry in aerosol-induced cooling yields a southward shift of the intertropical convergence zone, thus giving rise to a significant reduction in precipitation north of the equator, and an increase to the south. The simulations show that the change of precipitation in response to the simultaneous increases in aerosols and gases not only largely follows the same pattern as that for aerosols alone, but that it is also substantially strengthened in terms of magnitude south of 10°N. This is quite different from the damping expected from adding up individual responses, and further indicates the nonlinearity in the model’s hydrological response.

2014 ◽  
Vol 10 (1) ◽  
pp. 269-291 ◽  
Author(s):  
F. Colleoni ◽  
S. Masina ◽  
A. Cherchi ◽  
A. Navarra ◽  
C. Ritz ◽  
...  

Abstract. The present manuscript compares Marine Isotope Stage 5 (MIS 5, 125–115 kyr BP) and MIS 7 (236–229 kyr BP) with the aim to investigate the origin of the difference in ice-sheet growth over the Northern Hemisphere high latitudes between these last two inceptions. Our approach combines a low resolution coupled atmosphere–ocean–sea-ice general circulation model and a 3-D thermo-mechanical ice-sheet model to simulate the state of the ice sheets associated with the inception climate states of MIS 5 and MIS 7. Our results show that external forcing (orbitals and GHG) and sea-ice albedo feedbacks are the main factors responsible for the difference in the land-ice initial state between MIS 5 and MIS 7 and that our cold climate model bias impacts more during a cold inception, such as MIS 7, than during a warm inception, such as MIS 5. In addition, if proper ice-elevation and albedo feedbacks are not taken into consideration, the evolution towards glacial inception is hardly simulated, especially for MIS 7. Finally, results highlight that while simulated ice volumes for MIS 5 glacial inception almost fit with paleo-reconstructions, the lack of precipitation over high latitudes, identified as a bias of our climate model, does not allow for a proper simulation of MIS 7 glacial inception.


2016 ◽  
Author(s):  
Douglas G. MacMartin ◽  
Ben Kravitz

Abstract. Climate emulators trained on existing simulations can be used to project the climate effects that would result from different possible future pathways of anthropogenic forcing, without relying on general circulation model (GCM) simulations for every possible pathway. We extend this idea to include different amounts of solar geoengineering in addition to different pathways of green-house gas concentrations by training emulators from a multi-model ensemble of simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt 4 x CO2 and a compensating solar reduction simulation (G1), and evaluated by comparing predictions against a simulated 1 % per year CO2 increase and a similarly smaller solar reduction (G2). We find reasonable agreement in most models for predicting changes in temperature and precipitation (including regional effects), and annual-mean Northern hemisphere sea ice extent, with the difference between simulation and prediction typically smaller than natural variability. This verifies that the linearity assumption used in constructing the emulator is sufficient for these variables over the range of forcing considered. Annual-minimum Northern hemisphere sea ice extent is less-well predicted, indicating the limits of the linearity assumption. For future pathways involving relatively small forcing from solar geoengineering, the errors introduced from nonlinear effects may be smaller than the uncertainty due to natural variability, and the emulator prediction may be a more accurate estimate of the forced component of the models' response than an actual simulation would be.


2009 ◽  
Vol 22 (22) ◽  
pp. 6089-6103 ◽  
Author(s):  
Richard T. Wetherald

Abstract This paper examines hydrological variability and its changes in two different versions of a coupled ocean–atmosphere general circulation model developed at the National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory and forced with estimates of future increases of greenhouse gas and aerosol concentrations. This paper is the second part, documenting potential changes in variability as greenhouse gases increase. The variance changes are examined using an ensemble of 8 transient integrations for an older model version and 10 transient integrations for a newer model. Monthly and annual data are used to compute the mean and variance changes. Emphasis is placed on computing and analyzing the variance changes for the middle of the twenty-first century and compared with those found in the respective control integrations. The hydrologic cycle intensifies because of the increase of greenhouse gases. In general, precipitation variance increases in most places. This is the case virtually everywhere the mean precipitation rate increases and many places where the precipitation decreases. The precipitation rate variance decreases in the subtropics, where the mean precipitation rate also decreases. The increased precipitation rate and variance, in middle to higher latitudes during late fall, winter, and early spring leads to increased runoff and its variance during that period. On the other hand, the variance changes of soil moisture are more complicated, because soil moisture has both a lower and upper bound that tends to reduce its fluctuations. This is particularly true in middle to higher latitudes during winter and spring, when the soil moisture is close to its saturation value at many locations. Therefore, changes in its variance are limited. Soil moisture variance change is positive during the summer, when the mean soil moisture decreases and is close to the middle of its allowable range. In middle to high northern latitudes, an increase in runoff and its variance during late winter and spring plus the decrease in soil moisture and its variance during summer lend support to the hypothesis stated in other publications that a warmer climate can cause an increasing frequency of both excessive discharge and drier events, depending on season and latitude.


2020 ◽  
Vol 24 (1) ◽  
pp. 269-291 ◽  
Author(s):  
Alfonso Senatore ◽  
Luca Furnari ◽  
Giuseppe Mendicino

Abstract. Operational meteo-hydrological forecasting chains are affected by many sources of uncertainty. In coastal areas characterized by complex topography, with several medium-to-small size catchments, quantitative precipitation forecast becomes even more challenging due to the interaction of intense air–sea exchanges with coastal orography. For such areas, which are quite common in the Mediterranean Basin, improved representation of sea surface temperature (SST) space–time patterns can be particularly important. The paper focuses on the relative impact of different resolutions of SST representation on regional operational forecasting chains (up to river discharge estimates) over coastal Mediterranean catchments, with respect to two other fundamental options while setting up the system, i.e. the choice of the forcing general circulation model (GCM) and the possible use of a three-dimensional variational assimilation (3D-Var) scheme. Two different kinds of severe hydro-meteorological events that affected the Calabria region (southern Italy) in 2015 are analysed using the WRF-Hydro atmosphere–hydrology modelling system in its uncoupled version. Both of the events are modelled using the 0.25∘ resolution global forecasting system (GFS) and the 16 km resolution integrated forecasting system (IFS) initial and lateral atmospheric boundary conditions, which are from the European Centre for Medium-Range Weather Forecasts (ECMWF), applying the WRF mesoscale model for the dynamical downscaling. For the IFS-driven forecasts, the effects of the 3D-Var scheme are also analysed. Finally, native initial and lower boundary SST data are replaced with data from the Medspiration project by Institut Français de Recherche pour L'Exploitation de la Mer (IFREMER)/Centre European Remote Sensing d'Archivage et de Traitement (CERSAT), which have a 24 h time resolution and a 2.2 km spatial resolution. Precipitation estimates are compared with both ground-based and radar data, as well as discharge estimates with stream gauging stations' data. Overall, the experiments highlight that the added value of high-resolution SST representation can be hidden by other more relevant sources of uncertainty, especially the choice of the general circulation model providing the boundary conditions. Nevertheless, in most cases, high-resolution SST fields show a non-negligible impact on the simulation of the atmospheric boundary layer processes, modifying flow dynamics and/or the amount of precipitated water; thus, this emphasizes the fact that uncertainty in SST representation should be duly taken into account in operational forecasting in coastal areas.


2007 ◽  
Vol 37 (4) ◽  
pp. 896-907 ◽  
Author(s):  
Alexey Fedorov ◽  
Marcelo Barreiro ◽  
Giulio Boccaletti ◽  
Ronald Pacanowski ◽  
S. George Philander

Abstract The impacts of a freshening of surface waters in high latitudes on the deep, slow, thermohaline circulation have received enormous attention, especially the possibility of a shutdown in the meridional overturning that involves sinking of surface waters in the northern Atlantic Ocean. A recent study by Fedorov et al. has drawn attention to the effects of a freshening on the other main component of the oceanic circulation—the swift, shallow, wind-driven circulation that varies on decadal time scales and is closely associated with the ventilated thermocline. That circulation too involves meridional overturning, but its variations and critical transitions affect mainly the Tropics. A surface freshening in mid- to high latitudes can deepen the equatorial thermocline to such a degree that temperatures along the equator become as warm in the eastern part of the basin as they are in the west, the tropical zonal sea surface temperature gradient virtually disappears, and permanently warm conditions prevail in the Tropics. In a model that has both the wind-driven and thermohaline components of the circulation, which factors determine the relative effects of a freshening on the two components and its impact on climate? Studies with an idealized ocean general circulation model find that vertical diffusivity is one of the critical parameters that affect the relative strength of the two circulation components and hence their response to a freshening. The spatial structure of the freshening and imposed meridional temperature gradients are other important factors.


Sign in / Sign up

Export Citation Format

Share Document