Solar Radiation and Earth Temperatures

1902 ◽  
Vol 23 ◽  
pp. 296-311
Author(s):  
C. G. Knott

At a recent meeting of the Society, Dr Buchan read a paper based on certain observations of the temperature of the waters of the Mediterranean, which had been made by the staff of the Austrian ship Pola. These indicated that the direct effect of solar Tadiation was felt to a depth of over 150 feet. At any rate, the facts were that the temperature of the upper stratum of water of this thickness was perceptibly higher at about 4 p.m. than at 8 a.m., and that the difference was about 1°·5 Fahr. or 0°·8 Cent, at the surface, diminishing fairly steadily to value zero at a depth of fully 150 feet or 50 metres. It may easily be calculated that this excess of temperature at the afternoon hour means the accumulation of an amount of heat equal to 1460 units in every column of water 1 square centimetre in section; and this is accomplished within the eight hours from 8 a.m. to 4 p.m. It must be noted that this accumulation of heat is a daily occurrence.

2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


2019 ◽  
Vol 67 (3) ◽  
pp. 280-288 ◽  
Author(s):  
Jitka Kofroňová ◽  
Miroslav Tesař ◽  
Václav Šípek

Abstract Longwave radiation, as part of the radiation balance, is one of the factors needed to estimate potential evapotranspiration (PET). Since the longwave radiation balance is rarely measured, many computational methods have been designed. In this study, we report on the difference between the observed longwave radiation balance and modelling results obtained using the two main procedures outlined in FAO24 (relying on the measured sunshine duration) and FAO56 (based on the measured solar radiation) manuals. The performance of these equations was evaluated in the April–October period over eight years at the Liz experimental catchment and grass surface in the Bohemian Forest (Czech Republic). The coefficients of both methods, which describe the influence of cloudiness factor and atmospheric emissivity of the air, were calibrated. The Penman-Monteith method was used to calculate the PET. The use of default coefficient values gave errors of 40–100 mm (FAO56) and 0–20 mm (FAO24) for the seasonal PET estimates (the PET was usually overestimated). Parameter calibration decreased the FAO56 error to less than 20 mm per season (FAO24 remained unaffected by the calibration). The FAO56 approach with calibrated coefficients proved to be more suitable for estimation of the longwave radiation balance.


2007 ◽  
Vol 152 (2) ◽  
pp. 351-361 ◽  
Author(s):  
Stefano Goffredo ◽  
Erik Caroselli ◽  
Elettra Pignotti ◽  
Guido Mattioli ◽  
Francesco Zaccanti

2009 ◽  
Vol 39 (2) ◽  
pp. 387-403 ◽  
Author(s):  
Shinichiro Kida ◽  
Jiayan Yang ◽  
James F. Price

Abstract Marginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms—by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux associated with baroclinic instability. Because both mechanisms tend to be localized in space, the resulting upper ocean circulation can be characterized as a β plume for which the relevant background potential vorticity is set by the slope of the topography, that is, a topographic β plume. The entrainment-driven topographic β plume consists of a single gyre that is aligned along isobaths. The circulation is cyclonic within the upper ocean (water columns are stretched). The transport within one branch of the topographic β plume may exceed the entrainment flux by a factor of 2 or more. Overflows are likely to be baroclinically unstable, especially near the strait. This creates eddy variability in both the upper ocean and overflow layers and a flux of momentum and energy in the vertical. In the time mean, the eddies accompanying baroclinic instability set up a double-gyre circulation in the upper ocean, an eddy-driven topographic β plume. In regions where baroclinic instability is growing, the momentum flux from the overflow into the upper ocean acts as a drag on the overflow and causes the overflow to descend the slope at a steeper angle than what would arise from bottom friction alone. Numerical model experiments suggest that the Faroe Bank Channel overflow should be the most prominent example of an eddy-driven topographic β plume and that the resulting upper-layer transport should be comparable to that of the overflow. The overflow-layer eddies that accompany baroclinic instability are analogous to those observed in moored array data. In contrast, the upper layer of the Mediterranean overflow is likely to be dominated more by an entrainment-driven topographic β plume. The difference arises because entrainment occurs at a much shallower location for the Mediterranean case and the background potential vorticity gradient of the upper ocean is much larger.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Miloud Bessafi ◽  
Vishwamitra Oree ◽  
Abdel Anwar Hossen Khoodaruth ◽  
Guillaume Jumaux ◽  
François Bonnardot ◽  
...  

An accurate assessment of the amount solar radiation incident at specific locations is highly complex due to the dependence of available solar radiation on many meteorological and topographic parameters. Reunion Island, a small tropical French territory, intends to deploy solar energy technologies rapidly. In this context, the variability and intermittency of solar irradiance in different regions of the island is of immediate interest if the generated energy will be integrated in the existing energy network. This paper identifies different features of spatial and temporal variability of daily global horizontal irradiance (GHI) observed on Reunion Island. For this purpose, trends in the mean daily as well as seasonal variability of GHI were investigated. Furthermore, the intermittency and multifractal behaviors of the spatial daily GHI change were examined. Analyzing this daily variability is crucial to day-ahead forecasting of solar resource for better managing solar integration in the power grid, particularly in small island states with isolated power systems. Results revealed that the difference in cumulative GHI for two successive days ranges between −10 and 10 kW/m2/day while the highest and lowest variability of daily change occurs during summer and winter, respectively. The decorrelation distance, which gives a measure of the distance over which the variability at distinct geographic locations become independent of one another at a given timescale, was also calculated. It was found that the average decorrelation distance for day-to-day GHI change is about 22 km, a smaller value than that calculated by the previous studies using much sparser radiometric networks. The Hurst exponent, fractal co-dimension, and Lévy parameter, which describe solar radiation intermittency, were also evaluated for Reunion Island.


2011 ◽  
Vol 255-260 ◽  
pp. 952-956
Author(s):  
Jian Ping Sun ◽  
Jian Ping Chen ◽  
Gang Li

The reasons why the producing of the difference in temperature distributing and thermal stresses of box aqueduct under solar radiation are analyzed. The difference in temperature distributing and thermal stresses are effectively simulated by the finite element software ANSYS.The calculation results indicate that concrete box aqueduct body inter-surface whatever along the longitudinal and transverse will produce considerable thermal stresses under solar radiation, and its value has exceeded the design of concrete tensile strength. Therefore, the thermal stresses under the solar radiation must be considered in the design of box aqueduct body structural. We should appropriately configure temperature reinforcing steel bar.


1873 ◽  
Vol 21 (139-147) ◽  
pp. 387-393

There is a general flow of the Black-Sea water through the Bosphorus, Marmara, and Dardanelles to the Mediterranean, probably caused by the combination of three things:—first, the prevalence of N. E. winds in the Black Sea; secondly, the excess of water received from the large rivers over the amount lost by temperature at some seasons; and, thirdly, the difference of specific gravities in the two seas. Of these, observation goes to prove that the wind has by far the greatest influence.


1960 ◽  
Vol 11 (5) ◽  
pp. 871 ◽  
Author(s):  
DF Dowling

An experiment was performed to test the effect of solar radiation on the body temperatures of cattle, both clipped and with hair coat, in a clear transparent plastic covering as compared with cattle in a white reflective plastic covering. The mean body temperature of the animals in white plastic coats was 0.15°F lower than that of animals in clear plastic coats. This difference was highly significant statistically (P< 0.001). Animals in both clear and white coats had higher body temperatures than controls without plastic coats. The difference was highly significant, and was about 1.5°F in the clipped animals.


Sign in / Sign up

Export Citation Format

Share Document