scholarly journals Determining Thorpe Scales from Ship-Lowered CTD Density Profiles

2008 ◽  
Vol 25 (9) ◽  
pp. 1657-1670 ◽  
Author(s):  
Ann Gargett ◽  
Teresa Garner

Abstract CTD measurements taken as an integral part of oceanographic cruises could provide valuable information on spatial locations and time variability of significant shear-generated mixing in the ocean interior if used routinely to calculate Thorpe scales, that is, estimates of the scales of vertical overturning in an otherwise stably stratified fluid. This paper outlines methods for calculating reliable Thorpe scales from density profiles taken with a shipborne CTD, including removal of questionable instabilities associated with termination of pressure reversals, reduction of the effects of density noise by computation of an intermediate density profile, and overturn verification by a two-parameter (Ro, ΔN) diagnostic. The Ro criterion alone reliably removes overturns that result from salinity spikes at the high gradient boundaries of a weakly stratified layer, a common cause of highly suspect overturns. The ΔN diagnostic is a new water mass test describing the degree of “tightness” of the temperature–salinity (T–S) relationship. The present two-parameter diagnostic rejects a significantly larger percentage of suspect overturns than does a previous single-parameter water mass test. Despite developing a more reliable water mass diagnostic, the authors conclude that rejection of overturns based on a water mass test that incorporates expectation of T–S tightness is not warranted, given possibilities of T–S “looseness” resulting from mixing over regions of nonlinear T–S structure and/or from potential effects of differential diffusion.

Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 83 ◽  
Author(s):  
V. Loodts ◽  
H. Saghou ◽  
B. Knaepen ◽  
L. Rongy ◽  
A. De Wit

When a solute A dissolves into a host fluid containing a reactant B, an A + B → C reaction can influence the convection developing because of unstable density gradients in the gravity field. When A increases density and all three chemical species A, B and C diffuse at the same rate, the reactive case can lead to two different types of density profiles, i.e., a monotonically decreasing one from the interface to the bulk and a non-monotonic profile with a minimum. We study numerically here the nonlinear reactive convective dissolution dynamics in the more general case where the three solutes can diffuse at different rates. We show that differential diffusion can add new dynamic effects like the simultaneous presence of two different convection zones in the host phase when a non-monotonic profile with both a minimum and a maximum develops. Double diffusive instabilities can moreover affect the morphology of the convective fingers. Analysis of the mixing zone, the reaction rate, the total amount of stored A and the dissolution flux further shows that varying the diffusion coefficients of the various species has a quantitative effect on convection.


2005 ◽  
pp. 13-32 ◽  
Author(s):  
R. Caimmi ◽  
C. Marmo ◽  
T. Valentinuzzi

Analytical and geometrical properties of generalized power-law (GPL) density profiles are investigated in detail. In particular, a one-to-one correspondence is found between mathematical parameters (a scaling radius, r0, a scaling density, ?0, and three exponents, ?, ?, ?), and geometrical parameters (the coordinates of the intersection of the asymptotes, xC, yC, and three vertical intercepts, b, b?, b?, related to the curve and the asymptotes, respectively): (r0,?0,?,?,?) ? (xC,yC,b,b?,b?). Then GPL density profiles are compared with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute values and least-squares fits involving the above mentioned five parameters (RFSM5 method) are prescribed. More specifically, the sum of absolute values or squares of absolute logarithmic residuals, Ri=log?SDH(ri) ? log?GPL(ri), is evaluated on 10 points making a 5dimension hypergrid, through a few iterations. The size is progressively reduced around a fiducial minimum, and superpositions on nodes of earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on the scale of cluster of galaxies, within a flat ?CDM cosmological model (Rasia et al. 2004). In dealing with the mean SDH density profile, a virial radius, Rvir, averaged over the whole sample, is assigned, which allows the calculation of the remaining parameters. Using a RFSM5 method provides a better fit with respect to other methods. The geometrical parameters, averaged over the whole sample of best fitting GPL density profiles, yield (?, ?, ?) ? (0.6,3.1,1.0), to be compared with (?, ?, ?) = (1,3,1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997), (?, ?, ?) = (1.5,3, 1.5) (Moore et al. 1998, 1999), (?, ?, ?) = (1,2.5,1) (Rasia et al. 2004); and, in addition, ? ? 1.5 (Hiotelis 2003), deduced from the application of a RFSM5 method, but using a different definition of scaled radius, or concentration; and ? ? 1.21.3 deduced from more recent high-resolution simulations (Diemand et al. 2004, Reed et al. 2005). No evident correlation is found between SDH dynamical state (relaxed or merging) and asymptotic inner slope of the fitting logarithmic density profile or (for SDH comparable virial masses) scaled radius. Mean values and standard deviations of some parameters are calculated, and in particular the decimal logarithm of the scaled radius, ?vir, reads < log?vir >= 0.74 and ?slog?vir = 0.150.17, consistent with previous results related to NFW density profiles. It provides additional support to the idea, that NFW density profiles may be considered as a convenient way to parametrize SDH density profiles, without implying that it necessarily produces the best possible fit (Bullock et al. 2001). A certain degree of degeneracy is found in fitting GPL to SDH density profiles. If it is intrinsic to the RFSM5 method or it could be reduced by the next generation of high-resolution simulations, still remains an open question. .


2008 ◽  
Vol 73 (4) ◽  
pp. 558-574 ◽  
Author(s):  
Douglas J. Henderson ◽  
Lutful B. Bhuiyan

An exact sum rule, due to Henderson, Blum, and Lebowitz, for the contact value of the density profile of ions in a primitive model electrolyte next to a planar, nonpolarizable charged hard wall, has been known for some years. This result has a pleasing physical interpretation and is local. It has been useful in assessing the accuracy of theoretical approximations. However, a sum rule for the contact value of the charge profile for the same system has, until recently, not been known. A few years ago, Boda and Henderson proposed what they thought might be a useful, but approximate, local expression for the contact value of the charge profile at a weakly charged electrode. Very recent computer simulations indicate that this expression may well be exact at low electrode charge. Recently, Holovko, Badiali, and di Caprio have obtained a more general, but nonlocal, sum rule for the contact value of the charge profile that is valid for all electrode charge. In this paper, we develop an alternative, nonlocal, but nonrigorous expression for this quantity. Both the expression of Holovko et al. and our new expression are examined by means of computer simulations. The Holovko et al. expression is exact and, within numerical uncertainties, seems supported by our simulations. Although admittedly nonrigorous, our simpler expression is in seemingly reasonable agreement with simulation and thus appears to be useful. The relation between the two expressions has not been established.


1970 ◽  
Vol 42 (1) ◽  
pp. 161-175 ◽  
Author(s):  
D. R. Caldwell

Observations of temperature drop as a function of heat flow in Rayleigh–Bénard convection with curved density profiles show: (1) reversal of slope in the heating curve, (2) oscillations with time, (3) history dependence, and (4) an increase in critical Rayleigh number as the curvature of the density profile is increased. Some of the results are quite similar to the predictions of Busse.


1983 ◽  
Vol 132 ◽  
pp. 457-466 ◽  
Author(s):  
M. Grae Worster ◽  
Herbert E. Huppert

An approximate analytic expression for the time-dependent density profile formed by a turbulent buoyant plume in a confined region is presented. The analysis is based on the approximation that the density of the fluid behind the first front changes at a rate which is virtually independent of position. The approximate expression is shown to be in excellent agreement with a full numerical integration of the governing equations.


2020 ◽  
Vol 497 (2) ◽  
pp. 2393-2417 ◽  
Author(s):  
Alexandres Lazar ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
T K Chan ◽  
Philip F Hopkins ◽  
...  

ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $0.5{{\ \rm per\ cent}}$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$) to the largest spirals ($M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $\gtrsim 100\ \rm pc$ in galaxies with M⋆/Mhalo &lt; 5 × 10−4 or $M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation.


2014 ◽  
Vol 11 (S308) ◽  
pp. 551-554
Author(s):  
E. Ricciardelli ◽  
V. Quilis ◽  
J. Varela

AbstractThe massive exploitation of cosmic voids for precision cosmology in the upcoming dark energy experiments, requires a robust understanding of their internal structure, particularly of their density profile. We show that the void density profile is insensitive to the void radius both in a catalogue of observed voids and in voids from a large cosmological simulation. However, the observed and simulated voids display remarkably different profile shapes, with the former having much steeper profiles than the latter. We ascribe such difference to the dependence of the observed profiles on the galaxy sample used to trace the matter distribution. Samples including low-mass galaxies lead to shallower profiles with respect to the samples where only massive galaxies are used, as faint galaxies live closer to the void centre. We argue that galaxies are biased tracers when used to probe the matter distribution within voids.


2022 ◽  
Vol 17 (01) ◽  
pp. C01008
Author(s):  
D. Hachmeister ◽  
C. Silva ◽  
J. Santos ◽  
G.D. Conway ◽  
L. Gil ◽  
...  

Abstract The high-field side high-density (HFSHD) region at ASDEX Upgrade (AUG) is a well-documented phenomenon leading to a dense plasma in the inner divertor region that expands upwards to the midplane, resulting in poloidally asymmetric scrape-off layer density profiles. This work investigates, via simulation and experiment, whether the HFSHD at the midplane leads to hollow density profiles at the high-field side. Using the frequency-modulated continuous-wave O-mode reflectometer at AUG, experimental evidence has been found of reflection patterns compatible with a hollow density profile that are reproduced by 1D full-wave simulations. Furthermore, this work assesses the uncertainties in the density profile reconstruction as a consequence of the inverted gradient, showing that the presence of an HFSHD may lead to an overestimation of the density in the confined region.


2008 ◽  
Vol 54 (186) ◽  
pp. 463-468 ◽  
Author(s):  
Robert L. Hawley ◽  
Ola Brandt ◽  
Elizabeth M. Morris ◽  
Jack Kohler ◽  
Andrew P. Shepherd ◽  
...  

AbstractOn an 11 m firn/ice core from Kongsvegen, Svalbard, we have used dielectric profiling (DEP) to measure electrical properties, and digital photography to measure a core optical stratigraphy (COS) profile. We also used a neutron-scattering probe (NP) to measure a density profile in the borehole from which the core was extracted. The NP- and DEP-derived density profiles were similar, showing large-scale (>30 cm) variation in the gravimetric densities of each core section. Fine-scale features (<10 cm) are well characterized by the COS record and are seen at a slightly lower resolution in both the DEP and NP records, which show increasing smoothing. A combination of the density accuracy of NP and the spatial resolution of COS provides a useful method of evaluating the shallow-density profile of a glacier, improving paleoclimate interpretation, mass-balance measurement and interpretation of radar returns.


Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 763 ◽  
Author(s):  
Tom De Mil ◽  
Yegor Tarelkin ◽  
Stephan Hahn ◽  
Wannes Hubau ◽  
Victor Deklerck ◽  
...  

Wood density profiles reveal a tree’s life strategy and growth. Density profiles are, however, rarely defined in terms of tissue fractions for wood of tropical angiosperm trees. Here, we aim at linking these fractions to corresponding density profiles of tropical trees from the Congo Basin. Cores of 8 tree species were scanned with X-ray Computed Tomography to calculate density profiles. Then, cores were sanded and the outermost 3 cm were used to semi-automatically measure vessel lumen, parenchyma and fibre fractions using the Weka segmentation tool in ImageJ. Fibre wall and lumen widths were measured using a newly developed semi-automated method. An assessment of density variation in function of growth ring boundary detection is done. A mixed regression model estimated the relative contribution of each trait to the density, with a species effect on slope and intercept of the regression. Position-dependent correlations were made between the fractions and the corresponding wood density profile. On average, density profile variation mostly reflects variations in fibre lumen and wall fractions, but these are species- and position-dependent: on some positions, parenchyma and vessels have a more pronounced effect on density. The model linking density to traits explains 92% of the variation, with 65% of the density profile variation attributed to the three measured traits. The remaining 27% is explained by species as a random effect. There is a clear variation between trees and within trees that have implications for interpreting density profiles in angiosperm trees: the exact driving anatomical fraction behind every density value will depend on the position within the core. The underlying function of density will thus vary accordingly.


Sign in / Sign up

Export Citation Format

Share Document