scholarly journals Simulation of a Serial Upstream-Propagating Mesoscale Convective System Event over Southeastern South America Using Composite Initial Conditions

2009 ◽  
Vol 137 (7) ◽  
pp. 2144-2163 ◽  
Author(s):  
Vagner Anabor ◽  
David J. Stensrud ◽  
Osvaldo L. L. de Moraes

Serial upstream-propagating mesoscale convective system (MCS) events over southeastern South America are important contributors to the local hydrologic cycle as they can provide roughly half of the total monthly summer precipitation. However, the mechanisms of upstream propagation for these events have not been explored. To remedy this situation, a numerical simulation of the composite environmental conditions from 10 observed serial MCS events is conducted. Results indicate that the 3-day simulation from the composite yields a reasonable evolution of the large-scale environment and produces a large region of organized convection in the warm sector over an extended period as seen in observations. Upstream propagation of the convective region is produced and is tied initially to the development and evolution of untrapped internal gravity waves. However, as convective downdrafts develop and begin to merge and form a surface cold pool in the simulation, the cold pool and its interaction with the environmental low-level flow also begins to play a role in convective evolution. While the internal gravity waves and cold pool interact over a several hour period to control the convective development, the cold pool eventually dominates and determines the propagation of the convective region by the end of the simulation. This upstream propagation of a South American convective region resembles the southward burst convective events described over the United States and highlights the complex interactions and feedbacks that challenge accurate forecasts of convective system evolution.

2008 ◽  
Vol 136 (8) ◽  
pp. 3087-3105 ◽  
Author(s):  
Vagner Anabor ◽  
David J. Stensrud ◽  
Osvaldo L. L. de Moraes

Abstract Serial mesoscale convective system (MCS) events with lifetimes over 18 h and up to nearly 70 h are routinely observed over southeastern South America from infrared satellite imagery during the spring and summer. These events begin over the southern La Plata River basin, with individual convective systems generally moving eastward with the cloud-layer-mean wind. However, an important and common subset of these serial MCS events shows individual MCSs moving to the east or southeast, yet the region of convective development as a whole shifts upstream to the north or northwest. Analyses of the composite mean environments from 10 of these upstream-propagating serial MCS events using NCEP–NCAR reanalysis data events indicates that the synoptic conditions resemble those found in mesoscale convective complex environments over the United States. The serial MCS events form within an environment of strong low-level warm advection and strong moisture advection between the surface and 700 hPa from the Amazon region southward. One feature that appears to particularly influence the low-level flow pattern at early times is a strong surface anticyclone located just off the coast of Brazil. At upper levels, the MCSs develop on the anticyclonic side of the entrance region to an upper-level jet. Mean soundings show that the atmosphere is moist from the surface to near 500 hPa, with values of convective available potential energy above 1200 J kg−1 at the time of system initiation. System dissipation and continued upstream propagation to the north and northwest occurs in tandem with a surface high pressure system that crosses the Andes Mountains from the west.


2014 ◽  
Vol 142 (1) ◽  
pp. 141-162 ◽  
Author(s):  
Bryan J. Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan Snook ◽  
Guifu Zhang

Abstract Doppler radar data are assimilated with an ensemble Kalman Filter (EnKF) in combination with a double-moment (DM) microphysics scheme in order to improve the analysis and forecast of microphysical states and precipitation structures within a mesoscale convective system (MCS) that passed over western Oklahoma on 8–9 May 2007. Reflectivity and radial velocity data from five operational Weather Surveillance Radar-1988 Doppler (WSR-88D) S-band radars as well as four experimental Collaborative and Adaptive Sensing of the Atmosphere (CASA) X-band radars are assimilated over a 1-h period using either single-moment (SM) or DM microphysics schemes within the forecast ensemble. Three-hour deterministic forecasts are initialized from the final ensemble mean analyses using a SM or DM scheme, respectively. Polarimetric radar variables are simulated from the analyses and compared with polarimetric WSR-88D observations for verification. EnKF assimilation of radar data using a multimoment microphysics scheme for an MCS case has not previously been documented in the literature. The use of DM microphysics during data assimilation improves simulated polarimetric variables through differentiation of particle size distributions (PSDs) within the stratiform and convective regions. The DM forecast initiated from the DM analysis shows significant qualitative improvement over the assimilation and forecast using SM microphysics in terms of the location and structure of the MCS precipitation. Quantitative precipitation forecasting skills are also improved in the DM forecast. Better handling of the PSDs by the DM scheme is believed to be responsible for the improved prediction of the surface cold pool, a stronger leading convective line, and improved areal extent of stratiform precipitation.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
John R. Lawson ◽  
William A. Gallus ◽  
Corey K. Potvin

The bow echo, a mesoscale convective system (MCS) responsible for much hail and wind damage across the United States, is associated with poor skill in convection-allowing numerical model forecasts. Given the decrease in convection-allowing grid spacings within many operational forecasting systems, we investigate the effect of finer resolution on the character of bowing-MCS development in a real-data numerical simulation. Two ensembles were generated: one with a single domain of 3-km horizontal grid spacing, and another nesting a 1-km domain with two-way feedback. Ensemble members were generated from their control member with a stochastic kinetic-energy backscatter scheme, with identical initial and lateral-boundary conditions. Results suggest that resolution reduces hindcast skill of this MCS, as measured with an adaptation of the object-based Structure–Amplitude–Location method. The nested 1-km ensemble produces a faster system than in both the 3-km ensemble and observations. The nested 1-km simulation also produced stronger cold pools, which could be enhanced by the increased (fractal) cloud surface area with higher resolution, allowing more entrainment of dry air and hence increased evaporative cooling.


2019 ◽  
Vol 147 (2) ◽  
pp. 495-517 ◽  
Author(s):  
Christopher A. Kerr ◽  
David J. Stensrud ◽  
Xuguang Wang

AbstractConvection intensity and longevity is highly dependent on the surrounding environment. Ensemble sensitivity analysis (ESA), which quantitatively and qualitatively interprets impacts of initial conditions on forecasts, is applied to very short-term (1–2 h) convective-scale forecasts for three cases during the Mesoscale Predictability Experiment (MPEX) in 2013. The ESA technique reveals several dependencies of individual convective storm evolution on their nearby environments. The three MPEX cases are simulated using a previously verified 36-member convection-allowing model (Δx = 3 km) ensemble created via the Weather Research and Forecasting (WRF) Model. Radar and other conventional observations are assimilated using an ensemble adjustment Kalman filter. The three cases include a mesoscale convective system (MCS) and both nontornadic and tornadic supercells. Of the many ESAs applied in this study, one of the most notable is the positive sensitivity of supercell updraft helicity to increases in both storm inflow region deep and shallow vertical wind shear. This result suggests that larger values of vertical wind shear within the storm inflow yield higher values of storm updraft helicity. Results further show that the supercell storms quickly enhance the environmental vertical wind shear within the storm inflow region. Application of ESA shows that these storm-induced perturbations then affect further storm evolution, suggesting the presence of storm–environment feedback cycles where perturbations affect future mesocyclone strength. Overall, ESA can provide insight into convection dependencies on the near-storm environment.


2013 ◽  
Vol 70 (2) ◽  
pp. 410-429 ◽  
Author(s):  
Jason A. Milbrandt ◽  
Hugh Morrison

Abstract A method to predict the bulk density of graupel ρg has been added to the two-moment Milbrandt–Yau bulk microphysics scheme. The simulation of graupel using the modified scheme is illustrated through idealized simulations of a mesoscale convective system using a 2D kinematic model with a prescribed flow field and different peak updraft speeds. To examine the relative impact of the various approaches to represent rimed ice, simulations were run for various graupel-only and graupel-plus-hail configurations. Because of the direct feedback of ρg to terminal fall speeds, the modified scheme produces a much different spatial distribution of graupel, with more mass concentrated in the convective region resulting in changes to the surface precipitation at all locations. With a strong updraft, the model can now produce solid precipitation at the surface in the convective region without a separate hail category. It is shown that a single rimed-ice category is capable of representing a realistically wide range of graupel characteristics in various atmospheric conditions without the need for a priori parameter settings. Sensitivity tests were conducted to examine various aspects of the scheme that affect the simulated ρg. Specific parameterizations pertaining to other hydrometeor categories now have a direct impact on the simulation of graupel, including the assumed aerosol distribution for droplet nucleation, which affects the drop sizes of both cloud and rain, and the mass–size relation for snow, which affects its density and hence the embryo density of graupel converted from snow due to riming.


2019 ◽  
Vol 148 (1) ◽  
pp. 289-311 ◽  
Author(s):  
Adam Varble ◽  
Hugh Morrison ◽  
Edward Zipser

Abstract Simulations of a squall line observed on 20 May 2011 during the Midlatitude Continental Convective Clouds Experiment (MC3E) using 750- and 250-m horizontal grid spacing are performed. The higher-resolution simulation has less upshear-tilted deep convection and a more elevated rear inflow jet than the coarser-resolution simulation in better agreement with radar observations. A stronger cold pool eventually develops in the 250-m run; however, the more elevated rear inflow counteracts the cold pool circulation to produce more upright convective cores relative to the 750-m run. The differing structure in the 750-m run produces excessive midlevel front-to-rear detrainment, reinforcing excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The contrasting mesoscale circulations are connected to early stage deep convective draft differences in the two simulations. Convective downdraft condensate mass, latent cooling, and downward motion all increase with downdraft area similarly in both simulations. However, the 750-m run has a relatively greater number of wide and fewer narrow downdrafts than the 250-m run averaged to the same 750-m grid, a consequence of downdrafts being under-resolved in the 750-m run. Under-resolved downdrafts in the 750-m run are associated with under-resolved updrafts and transport mid–upper-level zonal momentum downward to low levels too efficiently in the early stage deep convection. These results imply that under-resolved convective drafts in simulations may vertically transport air too efficiently and too far vertically, potentially biasing buoyancy and momentum distributions that impact mesoscale convective system evolution.


2019 ◽  
Vol 148 (1) ◽  
pp. 211-240 ◽  
Author(s):  
Rachel L. Miller ◽  
Conrad L. Ziegler ◽  
Michael I. Biggerstaff

Abstract This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.


2015 ◽  
Vol 72 (11) ◽  
pp. 4319-4336 ◽  
Author(s):  
Mitchell W. Moncrieff ◽  
Todd P. Lane

Abstract Part II of this study of long-lived convective systems in a tropical environment focuses on forward-tilted, downshear-propagating systems that emerge spontaneously from idealized numerical simulations. These systems differ in important ways from the standard mesoscale convective system that is characterized by a rearward-tilted circulation with a trailing stratiform region, an overturning updraft, and a mesoscale downdraft. In contrast to this standard mesoscale system, the downshear-propagating system considered here does not feature a mesoscale downdraft and, although there is a cold pool it is of secondary importance to the propagation and maintenance of the system. The mesoscale downdraft is replaced by hydraulic-jump-like ascent beneath an elevated, forward-tilted overturning updraft with negligible convective available potential energy. Therefore, the mesoscale circulation is sustained almost entirely by the work done by the horizontal pressure gradient and the kinetic energy available from environmental shear. This category of organization is examined by cloud-system-resolving simulations and approximated by a nonlinear archetypal model of the quasi-steady Lagrangian-mean mesoscale circulation.


2012 ◽  
Vol 140 (8) ◽  
pp. 2555-2574 ◽  
Author(s):  
Weixin Xu ◽  
Edward J. Zipser ◽  
Yi-Leng Chen ◽  
Chuntao Liu ◽  
Yu-Chieng Liou ◽  
...  

Abstract This study investigates a long-duration mesoscale system with extremely heavy rainfall over southwest Taiwan during the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). This mesoscale convective system develops offshore and stays quasi-stationary over the upstream ocean and southwest coast of Taiwan. New convection keeps developing upstream offshore but decays or dies after moving into the island, dropping the heaviest rain over the upstream ocean and coastal regions. Warm, moist, unstable conditions and a low-level jet (LLJ) are found only over the upstream ocean, while the island of Taiwan is under the control of a weak cold pool. The LLJ is lifted upward at the boundary between the cold pool and LLJ. Most convective clusters supporting the long-lived rainy mesoscale system are initiated and develop along that boundary. The initiation and maintenance is thought to be a “back-building–quasi-stationary” process. The cold pool forms from previous persistent precipitation with a temperature depression of 2°–4°C in the lowest 500 m, while the high terrain in Taiwan is thought to trap the cold pool from spreading or moving. As a result, the orography of Taiwan is “extended” to the upstream ocean and plays an indirect effect on the long-duration mesoscale system.


2015 ◽  
Vol 3 (10) ◽  
pp. 6459-6489
Author(s):  
J.-H. Jeong ◽  
D.-I. Lee ◽  
C.-C. Wang ◽  
I.-S. Han

Abstract. An extreme rainfall-producing mesoscale convective system (MCS) associated with the Changma front in southeastern Korea was investigated using observational data. This event recorded historic rainfall and led to devastating flash floods and landslides in the Busan metropolitan area on 7 July 2009. The aim of the present study is to analyze and better understand the synoptic and mesoscale environment, and the behavior of quasi-stationary MCS causing extreme rainfall. Synoptic and mesoscale analyses indicate that the MCS and heavy rainfall occurred association with a stationary front which resembled a warm front in structure. A strong southwesterly low-level jet (LLJ) transported warm and humid air and supplied the moisture toward the front, and the air rose upwards above the frontal surface. As the moist air was conditionally unstable, repeated upstream initiation of deep convection by back-building occurred at the coastline, while old cells moved downstream parallel to the convective line with training effect. Because the motion of convective cells nearly opposed the backward propagation, the system as a whole moved slowly. The back-building behavior was linked to the convectively produced cold pool and its outflow boundary, which played an essential role in the propagation and maintenance of the rainfall system. As a result, the quasi-stationary MCS caused a prolonged duration of heavy rainfall, leading to extreme rainfall over the Busan metropolitan area.


Sign in / Sign up

Export Citation Format

Share Document