scholarly journals A New Daily Pressure Dataset for Australia and Its Application to the Assessment of Changes in Synoptic Patterns during the Last Century

2010 ◽  
Vol 23 (5) ◽  
pp. 1111-1126 ◽  
Author(s):  
Lisa V. Alexander ◽  
Petteri Uotila ◽  
Neville Nicholls ◽  
Amanda Lynch

Abstract A high-quality daily dataset of in situ mean sea level pressure was collated for Australia for the period from 1907 to 2006. This dataset was used to assess changes in daily synoptic pressure patterns over Australia in winter using the method of self-organizing maps (SOMs). Twenty patterns derived from the in situ pressure observations were mapped to patterns derived from ERA-40 data to create daily synoptic pressure fields for the past century. Changes in the frequencies of these patterns were analyzed. The patterns that have been decreasing in frequency were generally those most strongly linked to variations in the southern annular mode (SAM) index, while patterns that have increased in frequency were more strongly correlated with variations in the positive phase of El Niño–Southern Oscillation. In general, there has been a reduction in the rain-bearing systems affecting southern Australia since the beginning of the twentieth century. Over the past century, reductions in the frequencies of synoptic patterns with a marked trough to the south of the country were shown to be linked to significant reductions in severe storms in southeast Australia and decreases in rainfall at four major Australian cities: Sydney, Melbourne, Adelaide, and Perth. Of these, Perth showed the most sustained decline in both the mean and extremes of rainfall linked to changes in the large-scale weather systems affecting Australia over the past century. The results suggest a century-long decline in the frequency of low pressure systems reaching southern Australia, consistent with the southward movement of Southern Hemisphere storm tracks. While most of these trends were not significant, associated changes in rainfall and storminess appear to have had significant impacts in the region.

2013 ◽  
Vol 26 (7) ◽  
pp. 2222-2246 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Lance M. Leslie

Abstract Over the past century, and especially after the 1970s, rainfall observations show an increase (decrease) of the wet summer (winter) season rainfall over northwest (southwest) Western Australia. The rainfall in central west Western Australia (CWWA), however, has exhibited comparatively much weaker coastal trends, but a more prominent inland increase during the wet summer season. Analysis of seasonally averaged rainfall data from a group of stations, representative of both the coastal and inland regions of CWWA, revealed that rainfall trends during the 1958–2010 period in the wet months of November–April were primarily associated with El Niño–Southern Oscillation (ENSO), and with the southern annular mode (SAM) farther inland. During the wet months of May–October, the Indian Ocean dipole (IOD) showed the most robust relationships. Those results hold when the effects of ENSO or IOD are excluded, and were confirmed using a principal component analysis of sea surface temperature (SST) anomalies, rainfall wavelet analyses, and point-by-point correlations of rainfall with global SST anomaly fields. Although speculative, given their long-term averages, reanalysis data suggest that from 1958 to 2010 the increase in CWWA inland rainfall largely is attributable to an increasing cyclonic anomaly trend over CWWA, bringing onshore moist tropical flow to the Pilbara coast. During May–October, the flow anomaly exhibits a transition from an onshore to offshore flow regime in the 2001–10 decade, which is consistent with the observed weaker drying trend during this period.


2008 ◽  
Vol 5 (5) ◽  
pp. 2791-2815 ◽  
Author(s):  
D. Verdon-Kidd ◽  
A. S. Kiem

Abstract. In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.


2014 ◽  
Vol 27 (4) ◽  
pp. 1395-1412 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Lance M. Leslie

Abstract Over the past century, particularly after the 1960s, observations of mean maximum temperatures reveal an increasing trend over the southeastern quadrant of the Australian continent. Correlation analysis of seasonally averaged mean maximum temperature anomaly data for the period 1958–2012 is carried out for a representative group of 10 stations in southeast Australia (SEAUS). For the warm season (November–April) there is a positive relationship with the El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) and an inverse relationship with the Antarctic Oscillation (AAO) for most stations. For the cool season (May–October), most stations exhibit similar relationships with the AAO, positive correlations with the dipole mode index (DMI), and marginal inverse relationships with the Southern Oscillation index (SOI) and the PDO. However, for both seasons, the blocking index (BI, as defined by M. Pook and T. Gibson) in the Tasman Sea (160°E) clearly is the dominant climate mode affecting maximum temperature variability in SEAUS with negative correlations in the range from r = −0.30 to −0.65. These strong negative correlations arise from the usual definition of BI, which is positive when blocking high pressure systems occur over the Tasman Sea (near 45°S, 160°E), favoring the advection of modified cooler, higher-latitude maritime air over SEAUS. A point-by-point correlation with global sea surface temperatures (SSTs), principal component analysis, and wavelet power spectra support the relationships with ENSO and DMI. Notably, the analysis reveals that the maximum temperature variability of one group of stations is explained primarily by local factors (warmer near-coastal SSTs), rather than teleconnections with large-scale drivers.


2011 ◽  
Vol 24 (13) ◽  
pp. 3272-3293 ◽  
Author(s):  
Tara J. Troy ◽  
Justin Sheffield ◽  
Eric F. Wood

Abstract Northern Eurasia has experienced significant change in its hydrology during the past century. Much of the literature has focused on documenting and understanding the trends rather than documenting the uncertainty that exists in current estimates of the mean hydroclimatology. This study quantifies the terrestrial water budget with reanalysis, hydrologic modeling, remote sensing, and in situ observations and shows there is significant uncertainty in the estimates of precipitation, evapotranspiration, runoff, and terrestrial water storage changes. The spread among the various datasets highlights the scientific community's inability to accurately characterize the hydroclimatology of this region, which is problematic because much attention has focused on hydrologic trends using these datasets. The largest relative differences among estimates exist in the terrestrial storage change, which also is the least studied variable. Seasonally, the spread in estimates relative to the mean is largest in winter, when uncertainty in cold-season processes and measurements causes large differences in the estimates. A methodology is developed that takes advantage of multiple sources of data and observed discharge to improve estimates of precipitation, evapotranspiration, and storage changes. The method also provides a framework to evaluate the errors in datasets for variables that have no large-scale in situ measurements, such as evapotranspiration.


2020 ◽  
Vol 16 (2) ◽  
pp. 743-756 ◽  
Author(s):  
Christoph Dätwyler ◽  
Martin Grosjean ◽  
Nathan J. Steiger ◽  
Raphael Neukom

Abstract. The climate of the Southern Hemisphere (SH) is strongly influenced by variations in the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM). Because of the limited length of instrumental records in most parts of the SH, very little is known about the relationship between these two key modes of variability over time. Using proxy-based reconstructions and last-millennium climate model simulations, we find that ENSO and SAM indices are mostly negatively correlated over the past millennium. Pseudo-proxy experiments indicate that currently available proxy records are able to reliably capture ENSO–SAM relationships back to at least 1600 CE. Palaeoclimate reconstructions show mostly negative correlations back to about 1400 CE. An ensemble of last-millennium climate model simulations confirms this negative correlation, showing a stable correlation of approximately −0.3. Despite this generally negative relationship we do find intermittent periods of positive ENSO–SAM correlations in individual model simulations and in the palaeoclimate reconstructions. We do not find evidence that these relationship fluctuations are caused by exogenous forcing nor by a consistent climate pattern. However, we do find evidence that strong negative correlations are associated with strong positive (negative) anomalies in the Interdecadal Pacific Oscillation and the Amundsen Sea Low during periods when SAM and ENSO indices are of opposite (equal) sign.


2011 ◽  
Vol 15 (2) ◽  
pp. 533-546 ◽  
Author(s):  
M. Becker ◽  
B. Meyssignac ◽  
L. Xavier ◽  
A. Cazenave ◽  
R. Alkama ◽  
...  

Abstract. Terrestrial water storage (TWS) composed of surface waters, soil moisture, groundwater and snow where appropriate, is a key element of global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) space gravimetry mission provides a new tool to measure large-scale TWS variations. However, for the past few decades, direct estimate of TWS variability is accessible from hydrological modeling only. Here we propose a novel approach that combines GRACE-based TWS spatial patterns with multi-decadal-long in situ river level records, to reconstruct past 2-D TWS over a river basin. Results are presented for the Amazon Basin for the period 1980–2008, focusing on the interannual time scale. Results are compared with past TWS estimated by the global hydrological model ISBA-TRIP. Correlations between reconstructed past interannual TWS variability and known climate forcing modes over the region (e.g., El Niño-Southern Oscillation and Pacific Decadal Oscillation) are also estimated. This method offers new perspective for improving our knowledge of past interannual TWS in world river basins where natural climate variability (as opposed to direct anthropogenic forcing) drives TWS variations.


2020 ◽  
Author(s):  
Michelle Maclennan ◽  
Jan Lenaerts

<p>High snowfall events on Thwaites Glacier are a key influencer of its ice mass change. In this study, we diagnose the mechanisms for orographic precipitation on Thwaites Glacier by analyzing the atmospheric conditions that lead to high snowfall events. A high-resolution regional climate model, RACMO2, is used in conjunction with MERRA-2 and ERA5 reanalysis to map snowfall and associated atmospheric conditions over the Amundsen Sea Embayment. We examine these conditions during high snowfall events over Thwaites Glacier to characterize the drivers of the precipitation and their spatial and temporal variability. Then we examine the seasonal differences in the associated weather patterns and their correlations with El Nino Southern Oscillation and the Southern Annular Mode. Understanding the large-scale atmospheric drivers of snowfall events allows us to recognize how these atmospheric drivers and consequent snowfall climatology will change in the future, which will ultimately improve predictions of accumulation on Thwaites Glacier.</p>


2010 ◽  
Vol 23 (6) ◽  
pp. 1334-1353 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Yun Li

Abstract Using the NCEP–NCAR reanalysis, the 40-yr ECMWF Re-Analysis (ERA-40), and precipitation data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Australian Bureau of Meteorology, the variability and circulation features influencing southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is called the southwest Australian circulation (SWAC) because of its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land–sea thermal contrast. The seasonal march of the SWAC in extended winter (May–October) is demonstrated by pentad data. An index based on the dynamics’ normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May–July) and late (August–October) winter. In weaker winter SWAC years, there is an anticyclonic anomaly over the southern Indian Ocean resulting in weaker westerlies and northerlies, which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter but also the long-term drying trend over SWWA in early winter. The well-coupled SWAC–SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the southern annular mode (SAM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA. The external forcing of the SWAC is also explored in this study.


Genome ◽  
2007 ◽  
Vol 50 (2) ◽  
pp. 137-141 ◽  
Author(s):  
Sylvia Glen Levine ◽  
Suchot Sunday ◽  
Ruth E. Dörig ◽  
Beat Suter ◽  
Paul Lasko

Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39–40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30–33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.


2014 ◽  
Vol 27 (15) ◽  
pp. 5801-5814 ◽  
Author(s):  
Bhupendra A. Raut ◽  
Christian Jakob ◽  
Michael J. Reeder

Abstract Since the 1970s, winter rainfall over coastal southwestern Australia (SWA) has decreased by 10%–20%, while summer rainfall has been increased by 40%–50% in the semiarid inland area. In this paper, a K-means algorithm is used to cluster rainfall patterns directly as opposed to the more conventional approach of clustering synoptic conditions (usually the mean sea level pressure) and inferring the associated rainfall. It is shown that the reduction in the coastal rainfall during winter is mainly due to fewer westerly fronts in June and July. The reduction in the frequency of strong fronts in June is responsible for half of the decreased rainfall in June–August (JJA), whereas the reduction in the frequency of weaker fronts in June and July accounts for a third of the total decrease. The increase in rainfall inland in December–February (DJF) is due to an increased frequency of easterly troughs in December and February. These rainfall patterns are linked to the southern annular mode (SAM) index and Southern Oscillation index (SOI). The reduction in coastal rainfall and the increase in rainfall inland are both related to the predominantly positive phase of SAM, especially when the phase of ENSO is neutral.


Sign in / Sign up

Export Citation Format

Share Document