Interaction of Tropical Deep Convection with the Large-Scale Circulation in the MJO

2010 ◽  
Vol 23 (7) ◽  
pp. 1837-1853 ◽  
Author(s):  
Eric Tromeur ◽  
William B. Rossow

Abstract To better understand the interaction between tropical deep convection and the Madden–Julian oscillation (MJO), tropical cloud regimes are defined by cluster analysis of International Satellite Cloud Climatology Project (ISCCP) cloud-top pressure—optical thickness joint distributions from the D1 dataset covering 21.5 yr. An MJO index based solely on upper-level wind anomalies is used to study variations of the tropical cloud regimes. The MJO index shows that MJO events are present almost all the time; instead of the MJO event being associated with “on or off” deep convection, it is associated with weaker or stronger mesoscale organization of deep convection. Atmospheric winds and humidity from NCEP–NCAR reanalysis 1 are used to characterize the large-scale dynamics of the MJO; the results show that the large-scale motions initiate an MJO event by moistening the lower troposphere by horizontal advection. Increasingly strong convection transports moisture into the upper troposphere, suggesting a reinforcement of the convection itself. The change of convection organization shown by the cloud regimes indicates a strong interaction between the large-scale circulation and deep convection. The analysis is extended to the complete atmospheric diabatic heating by precipitation, radiation, and surface fluxes. The wave organizes stronger convective heating of the tropical atmosphere, which results in stronger winds, while there is only a passive response of the surface, directly linked to cloud radiative effects. Overall, the results suggest that an MJO event is an amplification of large-scale wave motions by stronger convective heating, which results from a dynamic reorganization of scattered deep convection into more intense mesoscale systems.

Author(s):  
Yuya Hamaguchi ◽  
Yukari N. Takayabu

AbstractIn this study, the statistical relationship between tropical upper-tropospheric troughs (TUTTs) and the initiation of summertime tropical-depression type disturbances (TDDs) over the western and central North Pacific is investigated. By applying a spatiotemporal filter to the 34-year record of brightness temperature and using JRA-55 reanalysis products, TDD-event initiations are detected and classified as trough-related (TR) or non-trough-related (non-TR). The conventional understanding is that TDDs originate primarily in the lower-troposphere; our results refine this view by revealing that approximately 30% of TDDs in the 10°N-20°N latitude ranges are generated under the influence of TUTTs. Lead-lag composite analysis of both TR- and non-TR-TDDs clarifies that TR-TDDs occur under relatively dry and less convergent large-scale conditions in the lower-troposphere. This result suggests that TR-TDDs can form in a relatively unfavorable low-level environment. The three-dimensional structure of the wave activity flux reveals southward and downward propagation of wave energy in the upper troposphere that converges at the mid-troposphere around the region where TR-TDDs occur, suggesting the existence of extratropical forcing. Further, the role of dynamic forcing associated with the TUTT on the TR-TDD-initiation is analyzed using the quasi-geostrophic omega equation. The result reveals that moistening in the mid-to-upper troposphere takes place in association with the sustained dynamical ascent at the southeast side of the TUTT, which precedes the occurrence of deep convective heating. Along with a higher convective available potential energy due to the destabilizing effect of TUTTs, the moistening in the mid-to-upper troposphere also helps to prepare the environment favorable to TDDs initiation.


2015 ◽  
Vol 72 (9) ◽  
pp. 3378-3388 ◽  
Author(s):  
Usama Anber ◽  
Shuguang Wang ◽  
Adam Sobel

Abstract The effects of turbulent surface fluxes and radiative heating on tropical deep convection are compared in a series of idealized cloud-system-resolving simulations with parameterized large-scale dynamics. Two methods of parameterizing the large-scale dynamics are used: the weak temperature gradient (WTG) approximation and the damped gravity wave (DGW) method. Both surface fluxes and radiative heating are specified, with radiative heating taken as constant in the vertical in the troposphere. All simulations are run to statistical equilibrium. In the precipitating equilibria, which result from sufficiently moist initial conditions, an increment in surface fluxes produces more precipitation than an equal increment of column-integrated radiative heating. This is straightforwardly understood in terms of the column-integrated moist static energy budget with constant normalized gross moist stability. Under both large-scale parameterizations, the gross moist stability does in fact remain close to constant over a wide range of forcings, and the small variations that occur are similar for equal increments of surface flux and radiative heating. With completely dry initial conditions, the WTG simulations exhibit hysteresis, maintaining a dry state with no precipitation for a wide range of net energy inputs to the atmospheric column. The same boundary conditions and forcings admit a rainy state also (for moist initial conditions), and thus multiple equilibria exist under WTG. When the net forcing (surface fluxes minus radiative heating) is increased enough that simulations that begin dry eventually develop precipitation, the dry state persists longer after initialization when the surface fluxes are increased than when radiative heating is increased. The DGW method, however, shows no multiple equilibria in any of the simulations.


2009 ◽  
Vol 22 (9) ◽  
pp. 2389-2404 ◽  
Author(s):  
Mark D. Zelinka ◽  
Dennis L. Hartmann

Abstract Currently available satellite data can be used to track the response of clouds and humidity to intense precipitation events. A compositing technique centered in space and time on locations experiencing high rain rates is used to detail the characteristic evolution of several quantities measured from a suite of satellite instruments. Intense precipitation events in the convective tropics are preceded by an increase in low-level humidity. Optically thick cold clouds accompany the precipitation burst, which is followed by the development of spreading upper-level anvil clouds and an increase in upper-tropospheric humidity over a broader region than that occupied by the precipitation anomalies. The temporal separation between the convective event and the development of anvil clouds is about 3 h. The humidity increase at upper levels and the associated decrease in clear-sky longwave emission persist for many hours after the convective event. Large-scale vertical motions from reanalysis show a coherent evolution associated with precipitation events identified in an independent dataset: precipitation events begin with stronger upward motion anomalies in the lower troposphere, which then evolve toward stronger upward motion anomalies in the upper troposphere, in conjunction with the development of anvil clouds. Greater upper-tropospheric moistening and cloudiness are associated with larger-scale and better-organized convective systems, but even weaker, more isolated systems produce sustained upper-level humidity and clear-sky outgoing longwave radiation anomalies.


2007 ◽  
Vol 64 (2) ◽  
pp. 381-400 ◽  
Author(s):  
Boualem Khouider ◽  
Andrew J. Majda

Abstract Observations in the Tropics point to the important role of three cloud types, congestus, stratiform, and deep convective clouds, besides ubiquitous shallow boundary layer clouds for both the climatology and large-scale organized anomalies such as convectively coupled Kelvin waves, two-day waves, and the Madden–Julian oscillation. Recently, the authors have developed a systematic model convective parameterization highlighting the dynamic role of the three cloud types through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with lower troposphere heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes both a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation and also a nonlinear switch that favors either deep or congestus convection depending on whether the lower middle troposphere is moist or dry. Here these model convective parameterizations are applied to a 40 000-km periodic equatorial ring without rotation, with a background sea surface temperature (SST) gradient and realistic radiative cooling mimicking a tropical warm pool. Both the emerging “Walker cell” climatology and the convectively coupled wave fluctuations are analyzed here while various parameters in the model are varied. The model exhibits weak congestus moisture coupled waves outside the warm pool in a turbulent bath that intermittently amplify in the warm pool generating convectively coupled moist gravity wave trains propagating at speeds ranging from 15 to 20 m s−1 over the warm pool, while retaining a classical Walker cell in the mean climatology. The envelope of the deep convective events in these convectively coupled wave trains often exhibits large-scale organization with a slower propagation speed of 3–5 m s−1 over the warm pool and adjacent region. Occasional much rarer intermittent deep convection also occurs outside the warm pool. The realistic parameter regimes in the multicloud model are identified as those with linearized growth rates for large scale instabilities roughly in the range of 0.5 K day−1.


2006 ◽  
Vol 63 (4) ◽  
pp. 1308-1323 ◽  
Author(s):  
Boualem Khouider ◽  
Andrew J. Majda

Abstract Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward-propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective parameterization highlighting the dynamic role of the three cloud types is developed here through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low-level heating and cooling corresponding respectively to congestus and stratiform clouds. A systematic moisture equation is developed where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation. A nonlinear switch is developed that favors either deep or congestus convection depending on the relative dryness of the troposphere; in particular, a dry troposphere with large convective available potential energy (CAPE) has no deep convection and only congestus clouds. The properties of the multicloud model parameterization are tested by linearized analysis in a two-dimensional setup with no rotation with constant sea surface temperature. In particular, the present study reveals new mechanisms for the large-scale instability of moist gravity waves with features resembling observed convectively coupled Kelvin waves in realistic parameter regimes without any effect of wind-induced surface heat exchange (WISHE). A detailed dynamical analysis for the linear waves is given herein and idealized nonlinear numerical simulations are reported in a companion paper. A maximum congestus heating leads during the dry phase of the wave. It is followed by an increase of the boundary layer θe, that is, CAPE, and lower troposphere moistening that precondition the upper troposphere for the next deep convective episode. In turn, deep convection consumes CAPE and removes moisture, thus yielding the dry episode.


2019 ◽  
Author(s):  
Pierre Gentine ◽  
Adam Massmann ◽  
Benjamin R. Lintner ◽  
Sayed Hamed Alemohammad ◽  
Rong Fu ◽  
...  

Abstract. The continental tropics play a leading role in the terrestrial water and carbon cycles. Land–atmosphere interactions are integral in the regulation of surface energy, water and carbon fluxes across multiple spatial and temporal scales over tropical continents. We review here some of the important characteristics of tropical continental climates and how land–atmosphere interactions regulate them. Along with a wide range of climates, the tropics manifest a diverse array of land–atmosphere interactions. Broadly speaking, in tropical rainforests, light and energy are typically more limiting than precipitation and water supply for photosynthesis and evapotranspiration; whereas in savanna and semi-arid regions water is the critical regulator of surface fluxes and land–atmosphere interactions. We discuss the impact of the land surface, how it affects shallow clouds and how these clouds can feedback to the surface by modulating surface radiation. Some results from recent research suggest that shallow clouds may be especially critical to land–atmosphere interactions as these regulate the energy budget and moisture transport to the lower troposphere, which in turn affects deep convection. On the other hand, the impact of land surface conditions on deep convection appear to occur over larger, non-local, scales and might be critically affected by transitional regions between the climatologically dry and wet tropics.


2018 ◽  
Vol 75 (10) ◽  
pp. 3347-3363 ◽  
Author(s):  
Wojciech W. Grabowski

Influence of pollution on dynamics of deep convection continues to be a controversial topic. Arguably, only carefully designed numerical simulations can clearly separate the impact of aerosols from the effects of meteorological factors that affect moist convection. This paper argues that such a separation is virtually impossible using observations because of the insufficient accuracy of atmospheric measurements and the fundamental nature of the interaction between deep convection and its environment. To support this conjecture, results from numerical simulations are presented that apply modeling methodology previously developed by the author. The simulations consider small modifications, difficult to detect in observations, of the initial sounding, surface fluxes, and large-scale forcing tendencies. All these represent variations of meteorological conditions that affect deep convective dynamics independently of aerosols. The setup follows the case of daytime convective development over land based on observations during the Large-Scale Biosphere–Atmosphere (LBA) field project in Amazonia. The simulated observable macroscopic changes of convection, such as the surface precipitation and upper-tropospheric cloudiness, are similar to or larger than those resulting from changes of cloud condensation nuclei from pristine to polluted conditions studied previously using the same modeling case. Observations from Phase III of the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) are also used to support the argument concerning the impact of the large-scale forcing. The simulations suggest that the aerosol impacts on dynamics of deep convection cannot be isolated from meteorological effects, at least for the daytime development of unorganized deep convection considered in this study.


2008 ◽  
Vol 21 (4) ◽  
pp. 833-840 ◽  
Author(s):  
K. D. Williams ◽  
M. E. Brooks

Abstract The Met Office unified forecast–climate model is used to compare the properties of simulated climatological cloud regimes with those produced in short-range forecasts initialized from operational analyses. The regimes are defined as principal clusters of joint cloud-top pressure–optical depth histograms. In general, the cloud regime properties are found to be similar at all forecast times, including the climatological mean. This suggests that weaknesses in the representation of fast local processes are responsible for errors in the simulation of the cloud regimes. The increased horizontal resolution of the model used for numerical weather prediction generally has little impact on the cloud regimes, although the simulation of tropical shallow cumulus is improved, while the relative frequency of tropical deep convection and cirrus compare less favorably with observations. Analysis of the initial temperature tendency profiles for each cloud regime indicates that some of the initial temperature tendency, which leads to a systematic bias in the model climatology, is associated with a particular cloud regime.


2019 ◽  
Vol 865 ◽  
pp. 681-719
Author(s):  
Catherine A. Vreugdenhil ◽  
Bishakhdatta Gayen ◽  
Ross W. Griffiths

Direct numerical simulations are used to investigate the nature of fully resolved small-scale convection and its role in large-scale circulation in a rotating $f$-plane rectangular basin with imposed surface temperature difference. The large-scale circulation has a horizontal geostrophic component and a deep vertical overturning. This paper focuses on convective circulation with no wind stress, and buoyancy forcing sufficiently strong to ensure turbulent convection within the thermal boundary layer (horizontal Rayleigh numbers $Ra\approx 10^{12}{-}10^{13}$). The dynamics are found to depend on the value of a convective Rossby number, $Ro_{\unicode[STIX]{x0394}T}$, which represents the strength of buoyancy forcing relative to Coriolis forces. Vertical convection shifts from a mean endwall plume under weak rotation ($Ro_{\unicode[STIX]{x0394}T}>10^{-1}$) to ‘open ocean’ chimney convection plus mean vertical plumes at the side boundaries under strong rotation ($Ro_{\unicode[STIX]{x0394}T}<10^{-1}$). The overall heat throughput, horizontal gyre transport and zonally integrated overturning transport are then consistent with scaling predictions for flow constrained by thermal wind balance in the thermal boundary layer coupled to vertical advection–diffusion balance in the boundary layer. For small Rossby numbers relevant to circulation in an ocean basin, vertical heat transport from the surface layer into the deep interior occurs mostly in ‘open ocean’ chimney convection while most vertical mass transport is against the side boundaries. Both heat throughput and the mean circulation (in geostrophic gyres, boundary currents and overturning) are reduced by geostrophic constraints.


Sign in / Sign up

Export Citation Format

Share Document