scholarly journals Statistical Characteristics of Multipeak Raindrop Size Distributions at the Surface and Aloft in Different Rain Regimes

2009 ◽  
Vol 137 (10) ◽  
pp. 3501-3518 ◽  
Author(s):  
B. Radhakrishna ◽  
T. Narayana Rao

Abstract Two years (∼672 h) of lower-atmospheric wind profiler (LAWP) and 4 yr (∼733 h) of Joss–Waldvogel disdrometer measurements are utilized to study the multipeak (MP) occurrence statistics at the surface and aloft. For the first time, an attempt has been made to address several key questions regarding MPs: their occurrence statistics and their dependency on height, season, and type of precipitation. MPs are not exceptional; rather, they are observed at all altitudes, albeit with different occurrence percentages. The occurrence of MPs seems to be height dependent, and this dependency varies with the type of rain system. The occurrence percentage of bimodal echo (two peaks) is high above (below) the melting level (ML) in convection (in other types of rain). The percentage occurrence of bimodal echo in warm rain is similar to that in cold rain, but only below the ML. The spectrum with more than two peaks appears to be predominantly in convection, particularly above 4 km. The MP statistics on the surface DSD derived from disdrometer data also support the profiler statistics qualitatively (occurrence is more likely in convection); however, the magnitudes of the percentage of occurrence are different at the surface and aloft. The peaks in the raindrop size distribution (DSD) spectra exist predominantly in drop diameter ranges of 0.45–0.65 and 0.9–1.3 mm in all types of rain, consistent with earlier numerical and observational studies. The MP occurrence does not have seasonal dependence aloft, but shows some variation at the surface with a larger percentage of the occurrences in the southwest monsoon. However, peaks in the surface DSD exist at same diameters in both monsoon seasons.

2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


2019 ◽  
Author(s):  
Uriya Veerendra Murali Krishna ◽  
Subrata Kumar Das ◽  
Ezhilarasi Govindaraj Sulochana ◽  
Bhowmik Utsav ◽  
Sachin Madhukar Deshpande ◽  
...  

Abstract. The nature of raindrop size distribution (DSD) is analyzed during wet and dry spells of the Indian Summer Monsoon (ISM) over Western Ghats (WGs) using Joss-Waldvogel Disdrometer (JWD) measurements. The observed DSDs are fitted with gamma distribution, and the characteristic DSDs are studied during the summer monsoon seasons (June–September) of 2012–2015. The DSD spectra show distinct diurnal variation during wet and dry spells. The dry spells exhibit a strong diurnal cycle with two peaks, while the diurnal cycle is not prominent in the wet spells. The observational results reveal the microphysical characteristics of warm rain during both the wet and dry spells. Even though the warm rain processes are dominant over WGs during monsoon, the underlying dynamical processes cause the differences in DSD characteristics during wet and dry spells. In addition, the differences in DSD spectra with different rain rates are also observed during the wet and dry spells. The DSD spectra are further analyzed by separating into stratiform and convective types. Finally, an empirical relation between slope parameter, Λ and shape parameter, μ is derived by best fitting the quadratic polynomial for the observed data during both wet and dry spells as well as for the stratiform and convective types of precipitation. The Λ–μ relations obtained in the present study are slightly different in comparison with the earlier studies.


2019 ◽  
Vol 11 (4) ◽  
pp. 432 ◽  
Author(s):  
Asi Zhang ◽  
Junjun Hu ◽  
Sheng Chen ◽  
Dongming Hu ◽  
Zhenqing Liang ◽  
...  

This study investigates the statistical characteristics of raindrop size distributions (DSDs) in monsoon season with observations collected by the second-generation Particle Size and Velocity (Parsivel2) disdrometer located in Zhuhai, southern China. The characteristics are quantified based on convective and stratiform precipitation classified using the rainfall intensity and total number of drops. On average of the whole dataset, the DSD characteristic in southern China consists of a higher number concentration of relatively small-sized drops when compare with eastern China and northern China, respectively. In the meanwhile, the Dm and log10Nw scatter plots prove that the convective rain in monsoon season can be identified as maritime-like cluster. The DSD is in good agreement with a three-parameter gamma distribution, especially for the medium to large raindrop size. Using filtered data observed by Parsivel2 disdrometer, a new Z–R relationship, Z = 498R1.3, is derived for convective rain in monsoon season in southern China. These results offer insights of the microphysical nature of precipitation in Zhuhai during monsoon season, and provide essential information that may be useful for precipitation retrievals based on weather radar observations.


Author(s):  
Sung–Ho Suh ◽  
Hyeon–Joon Kim ◽  
Dong–In Lee ◽  
Tae–Hoon Kim

AbstractThis study analyzed the regional characteristics of raindrop size distribution (DSD) in the southern coastal area of South Korea. Data from March 2016 to February 2017 were recorded by four PARSIVEL disdrometers installed at intervals of ~20 km from the coastline to inland. Within 20 km from the coastline, multiple local maxima in the probability density function (PDF) were observed at Dm (mass-weighted drop diameter) = 0.6 mm and logNw (normalized intercept parameter) = 5.2 for stratiform rainfall, but these features were not observed more than 20 km from the coastline. Based on mean Dm–logNw values, stratiform rainfall clearly differed between coastal and inland areas. For convective precipitation, there was a linear relationship between Dm and Nw with the distance from the coastline. PDF analyses of diurnal variation in DSD confirmed that in spring and autumn the multiple local maxima appear in the daytime. The multiple local maxima in Dm (logNw) values were lower (higher) at nighttime (NT) than DT in the spring and summer season. These features were highly dependent on the prevailing wind. There was a pattern of increasing A and decreasing b in the radar reflectivity–rainfall rate (Z–R) relationship (Z = ARb) with distance from the coastline, and these features were more pronounced in convective precipitation. These diurnal variabilities were regular in stratiform rainfall, and there were large differences in quantitative precipitation estimation depending on the land–sea breeze in the coastal area.


2016 ◽  
Vol 17 (7) ◽  
pp. 2077-2104 ◽  
Author(s):  
Timothy H. Raupach ◽  
Alexis Berne

Abstract The drop size distribution (DSD) describes the microstructure of liquid precipitation. The high variability of the DSD reflects the variety of microphysical processes controlling raindrop properties and affects the retrieval of rainfall. An analysis of the effects of DSD subgrid variability on areal estimation of precipitation is presented. Data used were recorded with a network of disdrometers in Ardèche, France. DSD variability was studied over two typical scales: 5 km × 5 km, similar to the ground footprint size of the Global Precipitation Measurement (GPM) spaceborne weather radar, and 2.8 km × 2.8 km, an operational pixel size of the Consortium for Small-Scale Modeling (COSMO) numerical weather model. Stochastic simulation was used to generate high-resolution grids of DSD estimates over the regions of interest, constrained by experimental DSDs measured by disdrometers. From these grids, areal DSD estimates were derived. The error introduced by assuming a point measurement to be representative of the areal DSD was quantitatively characterized and was shown to increase with the size of the considered area and with drop size and to decrease with the integration time. The controlled framework allowed for the accuracy of retrieval algorithms to be investigated. Rainfall variables derived by idealized simulations of GPM- and COSMO-style algorithms were compared to subgrid distributions of the same variables. While rain rate and radar reflectivity were well represented, the estimated drop concentration and mass-weighted mean drop diameter were often less representative of subgrid values.


2001 ◽  
Vol 5 (4) ◽  
pp. 615-628 ◽  
Author(s):  
R. Uijlenhoet

Abstract. The conversion of the radar reflectivity factor Z(mm6m-3) to rain rate R(mm h-1 ) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the purpose of this paper to explain that the fundamental reason for the existence of such power law relationships is the fact that Z and R are related to each other via the raindrop size distribution. To this end, the concept of the raindrop size distribution is first explained. Then, it is demonstrated that there exist two fundamentally different forms of the raindrop size distribution, one corresponding to raindrops present in a volume of air and another corresponding to those arriving at a surface. It is explained how Z and R are defined in terms of both these forms. Using the classical exponential raindrop size distribution as an example, it is demonstrated (1) that the definitions of Z and R naturally lead to power law Z–R relationships, and (2) how the coefficients of such relationships are related to the parameters of the raindrop size distribution. Numerous empirical Z–R relationships are analysed to demonstrate that there exist systematic differences in the coefficients of these relationships and the corresponding parameters of the (exponential) raindrop size distribution between different types of rainfall. Finally, six consistent Z–R relationships are derived, based upon different assumptions regarding the rain rate dependence of the parameters of the (exponential) raindrop size distribution. An appendix shows that these relationships are in fact special cases of a general Z–R relationship that follows from a recently proposed scaling framework for describing raindrop size distributions and their properties. Keywords: radar hydrology, raindrop size distribution, radar reflectivity–rain rate relationship


2012 ◽  
Vol 51 (11) ◽  
pp. 1960-1970 ◽  
Author(s):  
Ricardo Sarmento Tenório ◽  
Marcia Cristina da Silva Moraes ◽  
Henri Sauvageot

AbstractA dataset on raindrop size distribution (DSD) gathered in a coastal site of the Alagoas state in northeastern Brazil is used to analyze some differences between continental and maritime rainfall parameters. The dataset is divided into two subsets. One is composed of rainfall systems coming from the continent and moving eastward (i.e., offshore), representing the continental subset. The other is composed of rainfall systems that developed over the sea and are moving westward (i.e., inshore), representing the maritime subset. The mean conditional rain rate (i.e., for rain rate R > 0) is found to be higher for maritime (4.6 mm h−1) than for continental (3.2 mm h−1) conditions. The coefficient of variation of the conditional rain rate is lower for the maritime (1.75) than for the continental (2.25) subset. The continental and maritime DSDs display significant differences. For drop diameter D smaller than about 2 mm, the number of drops is higher for maritime rain than for continental rain. This reverses for D > 2 mm, in such a way that radar reflectivity factor Z for the maritime case is lower than for the continental case at the same rain rate. These results show that, to estimate precipitation by radar in the coastal area of northeastern Brazil, coefficients of the Z–R relation need to be adapted to the direction of motion of the rain-bearing system, inshore or offshore.


Sign in / Sign up

Export Citation Format

Share Document