The Dynamic Response of the Hurricane Wind Field to Spiral Rainband Heating

2010 ◽  
Vol 67 (6) ◽  
pp. 1779-1805 ◽  
Author(s):  
Yumin Moon ◽  
David S. Nolan

Abstract The response of the hurricane wind field to spiral rainband heating is examined by using a three-dimensional, nonhydrostatic, linear model of the vortex–anelastic equations. Diabatic heat sources, which are designed in accordance with previous observations of spiral rainbands, are made to rotate with the flow around the hurricane-like wind field of a balanced, axisymmetric vortex. Common kinematic features are recovered, such as the overturning secondary circulation, descending midlevel radial inflow, and cyclonically accelerated tangential flow on the radially outward side of spiral rainbands. Comparison of the responses to the purely convective and stratiform rainbands indicates that the overturning secondary circulation is mostly due to the convective part of the rainband and is stronger in the upwind region, while midlevel radial inflow descending to the surface is due to the stratiform characteristics of the rainband and is stronger in the downwind region. The secondary horizontal wind maximum is exhibited in both convective and stratiform parts of the rainband, but it tends to be stronger in the downwind region. The results indicate that the primary effects of rainbands on the hurricane wind field are caused by the direct response to diabatic heating in convection embedded in them and that the structure of the diabatic heating is primarily responsible for their unique kinematic structures. Sensitivity tests confirm the robustness of the results. In addition, the response of the hurricane wind field to the rainband heating is, in the linear limit, the sum of the asymmetric potential vorticity and symmetric transverse circulations.

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1312
Author(s):  
Yue Wu ◽  
Zheng Sheng ◽  
Xinjie Zuo ◽  
Minghao Yang

Falling-sphere sounding remains an important method for in situ determination in the middle atmosphere and is the only determination method within the altitude range of 60–100 km. Traditional single-falling-sphere sounding indicates only the atmospheric density and horizontal wind but not the vertical wind; the fundamental reason is that the equation set for retrieving atmospheric parameters is underdetermined. For tractability, previous studies assumed the vertical wind, which is much smaller than the horizontal wind, to be small or zero. Obtaining vertical wind profiles necessitates making the equations positive definite or overdetermined. An overdetermined equation set consisting of six equations, by which the optimal solution of density and three-dimensional wind can be obtained, can be established by the double-falling-sphere method. Hence, a simulation experiment is designed to retrieve the atmospheric density and three-dimensional wind field by double falling spheres. In the inversion results of the simulation experiment, the retrieved density is consistent with the constructed atmospheric density in magnitude; the density deviation rate does not generally exceed 20% (less than 5% below 60 km). The atmospheric density retrieved by the double-falling-sphere method is more accurate at low altitudes than the single-falling-sphere method. The vertical wind below 50 km and horizontal wind retrieved by double-falling-sphere method is highly consistent with the constructed average wind field. Additionally, the wind field deviation formula is deduced. These results establish the fact that the double-falling-sphere method is effective in detecting atmospheric density and three-dimensional wind.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaobin Qiu ◽  
Qin Xu ◽  
Chongjian Qiu ◽  
Kang Nai ◽  
Pengfei Zhang

The previous two-dimensional simple adjoint method for retrieving horizontal wind field from a time sequence of single-Doppler scans of reflectivity and/or radial velocity is further developed into a new method to retrieve both horizontal and vertical winds at high temporal and spatial resolutions. This new method performs two steps. First, the horizontal wind field is retrieved on the conical surface at each tilt (elevation angle) of radar scan. Second, the vertical velocity field is retrieved in a vertical cross-section along the radar beam with the horizontal velocity given from the first step. The method is applied to phased array radar (PAR) rapid scans of the storm winds and reflectivity in a strong microburst event and is shown to be able to retrieve the three-dimensional wind field around a targeted downdraft within the storm that subsequently produced a damaging microburst. The method is computationally very efficient and can be used for real-time applications with PAR rapid scans.


2011 ◽  
Vol 68 (3) ◽  
pp. 430-449 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Yuqing Wang

Abstract The balanced contribution to the intensification of a tropical cyclone simulated in the three-dimensional, nonhydrostatic, full-physics tropical cyclone model version 4 (TCM4), in particular the spinup of the outer-core circulation, is investigated by solving the Sawyer–Eliassen equation and by computing terms in the azimuthal-mean tangential wind tendency equation. Results demonstrate that the azimuthal-mean secondary circulation (radial and vertical circulation) and the spinup of the midtropospheric outer-core circulation in the simulated tropical cyclone are well captured by balance dynamics. The midtropospheric inflow develops in response to diabatic heating in mid–upper-tropospheric stratiform (anvil) clouds outside the eyewall in active spiral rainbands and transports absolute angular momentum inward to spin up the outer-core circulation. Although the azimuthal-mean diabatic heating rate in the eyewall is the largest, its contribution to radial winds and thus the spinup of outer-core circulation in the middle troposphere is rather weak. This is because the high inertial stability in the inner-core region resists the radial inflow in the middle troposphere, limiting the inward transport of absolute angular momentum. The result thus suggests that diabatic heating in spiral rainbands is the key to the continued growth of the storm-scale circulation.


The travel and dispersion of pollutants in the free atmosphere m ay be investigated by the direct measurement of the distributions of tracer materials such as water vapour, ozone and radioactive substances. Another method is to study the spread of pollutants from a constant point source or the expansion of large clusters, by using air trajectories found by tracking balloons or estimated from sequences of wind values obtained from synoptic charts. So far these latter techniques have usually only taken horizontal motions into account since the balloons are normally maintained at constant levels and the winds taken from the charts have been assumed to be geostrophic. In principle the effect of large (synoptic) scale vertical motions can be included by using the component wind fields given at the different time steps of a numerical forecast integration to construct suitable three-dimensional trajectories. A pilot study of this type at the 900, 700, 500 and 300 m bar pressure levels (90, 70, 50 and 30kN m ~2) using the results of a 24 h numerical forecast by the Meteorological Office’s 10 level model is described. In the case studied the use of constant level trajectories gave horizontal dispersions (variances of the trajectory end points relative to their centre of gravity) which differed by only small amounts from those due to the three dimensional trajectories. The zonal variances exceeded the meridional variances by a small factor and both were 4 to 6 orders greater than those of the corresponding variances in the vertical. In each case for at least 12 to 18 h they were all roughly proportional to the square of the time after release (the ‘short time’ case). The large scale clusters rapidly distorted at rates which increased with their initial size and also with the deformation components of the wind field. At these scales deformation plays a major role in the apparent dispersion and the mean values of total deformation so obtained agreed satisfactorily with those calculated from a kinematic analysis of the horizontal wind field.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 133 ◽  
Author(s):  
Yang He ◽  
Zheng Sheng ◽  
Mingyuan He

Using a set of near space high-resolution balloon data released in Hami, Xinjiang, we explored the spectral characteristics of temperature fluctuations and three-dimensional wind field fluctuations. As different from previous studies, which were based on radiosondes, we have increased the height range of spectral analysis to the stratosphere (38 km), which can explore the variation of spectral features with altitude, and can analyze higher wavenumber regions. The results show that horizontal wind field disturbances are isotropic, meridional and zonal winds have relatively consistent spectral structures, while vertical wind fluctuations have completely different spectral structures, which cannot be explained by the existing “universal spectrum” theory. The observed spectrum of horizontal wind field can be explained well by the “wind-shifting” theory. The ratio of spectral kinetic energy to potential energy is approximately constant only in the high wavenumber region but it varies at different height intervals. This study is a necessary extension of the observation for the characteristics of the vertical wavenumber spectrum in northwestern China, and it is also an experimental observation of spectral characteristics using radiosonde data at higher altitudes.


2012 ◽  
Vol 140 (9) ◽  
pp. 2782-2805 ◽  
Author(s):  
Qingqing Li ◽  
Yuqing Wang

Abstract The simulated inner and outer spiral rainbands in a tropical cyclone are compared in this study. The inner rainbands are generally active immediately outside the eyewall in the rapid filamentation zone, while the outer rainbands are active in regions outside about 3 times the radius of maximum wind. The inner rainbands are characterized by the convectively coupled vortex Rossby waves. The movement of the outer rainbands follows the low-level vector winds associated with the azimuthally averaged low-level flow and the radially outward cross-band flow caused by the downdraft-induced cold pool in the boundary layer. Convective cells in outer rainbands are typical of convective systems and move cyclonically and radially outward (inward) at large (small) radii. Net upward vertical mass transports (VMTs) appear throughout the depth of the troposphere in the whole inner-rainband region, while net downward VMTs are found below 4-km height in the outer-rainband region. In the whole inner-rainband region, only a very shallow layer with net horizontal convergence appears below 2-km height, while a deep layer with net convergence is found below 7.5-km height with net divergence aloft in the outer-rainband region. The inner rainband shows two tangential wind maxima, respectively, located near the top of the inflow boundary layer and immediately below the upper-tropospheric outflow layer. A secondary horizontal wind maximum occurs at about 4-km height on the inner edge of the outer rainband. Distinct features of the upwind, middle, and downwind sectors of the outer rainband are also discussed.


Author(s):  
Honglei Xu ◽  
Linhuan Wang

In order to improve the accuracy of dynamic detection of wind field in the three-dimensional display space, system software is carried out on the actual scene and corresponding airborne radar observation information data, and the particle swarm algorithm fuzzy logic algorithm is introduced into the wind field dynamic simulation process in three-dimensional display space, to analyze the error of the filtering result in detail, to process the hurricane Lily Doppler radar measurement data with the optimal adaptive filtering according to the error data. The three-dimensional wind field synchronous measurement data obtained by filtering was compared with three-dimensional wind field synchronous measurement data of the GPS dropsonde in this experiment, the sea surface wind field measurement data of the multi-band microwave radiometer, and the wind field data at aircraft altitude.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 145
Author(s):  
Jianwei Chen ◽  
Liangming Wang ◽  
Jian Fu ◽  
Zhiwei Yang

A complex wind field refers to the typical atmospheric disturbance phenomena existing in nature that have a great influence on the flight of aircrafts. Aimed at the issues involving large volume of data, complex computations and a single model in the current wind field simulation approaches for flight environments, based on the essential principles of fluid mechanics, in this paper, wind field models for two kinds of wind shear such as micro-downburst and low-level jet plus three-dimensional atmospheric turbulence are established. The validity of the models is verified by comparing the simulation results from existing wind field models and the measured data. Based on the principle of vector superposition, three wind field models are combined in the ground coordinate system, and a comprehensive model of complex wind fields is established with spatial location as the input and wind velocity as the output. The model is applied to the simulated flight of a rocket projectile, and the change in the rocket projectile’s flight attitude and flight trajectory under different wind fields is analyzed. The results indicate that the comprehensive model established herein can reasonably and efficiently reflect the influence of various complex wind field environments on the flight process of aircrafts, and that the model is simple, extensible, and convenient to use.


2011 ◽  
Vol 139 (12) ◽  
pp. 3829-3847 ◽  
Author(s):  
Matthew Sitkowski ◽  
James P. Kossin ◽  
Christopher M. Rozoff

Abstract A flight-level aircraft dataset consisting of 79 Atlantic basin hurricanes from 1977 to 2007 was used to develop an unprecedented climatology of inner-core intensity and structure changes associated with eyewall replacement cycles (ERCs). During an ERC, the inner-core structure was found to undergo dramatic changes that result in an intensity oscillation and rapid broadening of the wind field. Concentrated temporal sampling by reconnaissance aircraft in 14 of the 79 hurricanes captured virtually the entire evolution of 24 ERC events. The analysis of this large dataset extends the phenomenological paradigm of ERCs described in previous observational case studies by identifying and exploring three distinct phases of ERCs: intensification, weakening, and reintensification. In general, hurricanes intensify, sometimes rapidly, when outer wind maxima are first encountered by aircraft. The mean locations of the inner and outer wind maximum at the start of an ERC are 35 and 106 km from storm center, respectively. The intensification rate of the inner wind maximum begins to slow and the storm ultimately weakens as the inner-core structure begins to organize into concentric rings. On average, the inner wind maximum weakens 10 m s−1 before the outer wind maximum surpasses the inner wind maximum as it continues to intensify. This reintensification can be quite dramatic and often brings the storm to its maximum lifetime intensity. The entire ERC lasts 36 h on average. Comparison of flight-level data and microwave imagery reveals that the first appearance of an outer wind maximum, often associated with a spiral rainband, typically precedes the weakening of the storm by roughly 9 h, but the weakening is already well under way by the time a secondary convective ring with a well-defined moat appears in microwave imagery. The data also show that winds beyond the outer wind maximum remain elevated even after the outer wind maximum contracts inward. Additionally, the contraction of the outer wind maximum usually ceases at a radius larger than the location of the inner wind maximum at the start of the ERC. The combination of a larger primary eyewall and expanded outer wind field increase the integrated kinetic energy by an average of 28% over the course of a complete ERC despite little change in the maximum intensity between the times of onset and completion of the event.


Sign in / Sign up

Export Citation Format

Share Document