scholarly journals A Comparison of Inner and Outer Spiral Rainbands in a Numerically Simulated Tropical Cyclone

2012 ◽  
Vol 140 (9) ◽  
pp. 2782-2805 ◽  
Author(s):  
Qingqing Li ◽  
Yuqing Wang

Abstract The simulated inner and outer spiral rainbands in a tropical cyclone are compared in this study. The inner rainbands are generally active immediately outside the eyewall in the rapid filamentation zone, while the outer rainbands are active in regions outside about 3 times the radius of maximum wind. The inner rainbands are characterized by the convectively coupled vortex Rossby waves. The movement of the outer rainbands follows the low-level vector winds associated with the azimuthally averaged low-level flow and the radially outward cross-band flow caused by the downdraft-induced cold pool in the boundary layer. Convective cells in outer rainbands are typical of convective systems and move cyclonically and radially outward (inward) at large (small) radii. Net upward vertical mass transports (VMTs) appear throughout the depth of the troposphere in the whole inner-rainband region, while net downward VMTs are found below 4-km height in the outer-rainband region. In the whole inner-rainband region, only a very shallow layer with net horizontal convergence appears below 2-km height, while a deep layer with net convergence is found below 7.5-km height with net divergence aloft in the outer-rainband region. The inner rainband shows two tangential wind maxima, respectively, located near the top of the inflow boundary layer and immediately below the upper-tropospheric outflow layer. A secondary horizontal wind maximum occurs at about 4-km height on the inner edge of the outer rainband. Distinct features of the upwind, middle, and downwind sectors of the outer rainband are also discussed.

2019 ◽  
Vol 76 (8) ◽  
pp. 2443-2462 ◽  
Author(s):  
Chau-Lam Yu ◽  
Anthony C. Didlake

Abstract Using idealized simulations, we examine the storm-scale wind field response of a dry, hurricane-like vortex to prescribed stratiform heating profiles that mimic tropical cyclone (TC) spiral rainbands. These profiles were stationary with respect to the storm center to represent the diabatic forcing imposed by a quasi-stationary rainband complex. The first profile was typical of stratiform precipitation with heating above and cooling below the melting level. The vortex response included a mesoscale descending inflow and a midlevel tangential jet, consistent with previous studies. An additional response was an inward-spiraling low-level updraft radially inside the rainband heating. The second profile was a modified stratiform heating structure derived from observations and consisted of a diagonal dipole of heating and cooling. The same features were found with stronger magnitudes and larger vertical extents. The dynamics and implications of the forced low-level updraft were examined. This updraft was driven by buoyancy advection because of the stratiform-induced low-level cold pool. The stationary nature of the rainband diabatic forcing played an important role in modulating the required temperature and pressure anomalies to sustain this updraft. Simulations with moisture and full microphysics confirmed that this low-level updraft response was robust and capable of triggering sustained deep convection that could further impact the storm evolution, including having a potential role in secondary eyewall formation.


2020 ◽  
Author(s):  
Giuseppe Torri ◽  
Zhiming Kuang

<p>Collisions represent one of the most important processes through which cold pools—essential boundary layer features of precipitating systems—help to organize convection. For example, by colliding with one another, expanding cold pools can trigger new convective cells, a process that has been argued to be important to explain the deepening of convection and the maintenance of mesoscale convective systems for many hours. In spite of their role, collisions are an understudied process, and many aspects remain to be fully clarified. In order to quantify the importance of collisions on the life cycle of cold pools, we will present some results based on a combination of numerical simulations in radiative-convective equilibrium and a Lagrangian cold pool tracking algorithm. First, we will discuss how the Lagrangian algorithm can be used to estimate that the median time of the first collision for the simulated cold pools is under 10 minutes. We will then show that cold pools are significantly deformed by collisions and lose their circular shape already at the very early stages of their life cycle. Finally, we will present results suggesting that cold pools appear to be clustered, and we will provide some estimates of the associated temporal and spatial scales.</p>


2008 ◽  
Vol 65 (4) ◽  
pp. 1323-1341 ◽  
Author(s):  
Matthew D. Parker

Abstract Organized convection has long been recognized to have a nocturnal maximum over the central United States. The present study uses idealized numerical simulations to investigate the mechanisms for the maintenance, propagation, and evolution of nocturnal-like convective systems. As a litmus test for the basic governing dynamics, the experiments use horizontally homogeneous initial conditions (i.e., they include neither fronts nor low-level jet streams). The simulated storms are allowed to mature as surface-based convective systems before the boundary layer is cooled. In this case it is then surprisingly difficult to cut the mature convective systems off from their source of near-surface inflow parcels. Even when 10 K of the low-level cooling has been applied, the preexisting system cold pool is sufficient to lift boundary layer parcels to their levels of free convection. The present results suggest that many of the nocturnal convective systems that were previously thought to be elevated may actually be surface based. With additional cooling, the simulated systems do, indeed, become elevated. First, the CAPE of the near-surface air goes to zero: second, as the cold pool’s temperature deficit vanishes, the lifting mechanism evolves toward a bore atop the nocturnal inversion. Provided that air above the inversion has CAPE, the system then survives and begins to move at the characteristic speed of the bore. Interestingly, as the preconvective environment is cooled and approaches the temperature of the convective outflow, but before the system becomes elevated, yet another distinct behavior emerges. The comparatively weaker cold pool entails slower system motion but also more intense lifting, apparently because it is more nearly balanced by the lower-tropospheric shear. This could explain the frequent observation of intensifying convective systems in the evening hours without the need for a nocturnal low-level jet. The governing dynamics of the simulated systems, as well as the behavior of low-level tracers and parcel trajectories, are addressed for a variety of environments and degrees of stabilization.


2018 ◽  
Vol 75 (9) ◽  
pp. 2909-2929 ◽  
Author(s):  
Anthony C. Didlake ◽  
Paul D. Reasor ◽  
Robert F. Rogers ◽  
Wen-Chau Lee

Abstract Airborne Doppler radar captured the inner core of Hurricane Earl during the early stages of secondary eyewall formation (SEF), providing needed insight into the SEF dynamics. An organized rainband complex outside of the primary eyewall transitioned into an axisymmetric secondary eyewall containing a low-level tangential wind maximum. During this transition, the downshear-left quadrant of the storm exhibited several notable features. A mesoscale descending inflow (MDI) jet persistently occurred across broad stretches of stratiform precipitation in a pattern similar to previous studies. This negatively buoyant jet traveled radially inward and descended into the boundary layer. Farther inward, enhanced low-level inflow and intense updrafts appeared. The updraft adjacent to the MDI was likely triggered by a region of convergence and upward acceleration (induced by the negatively buoyant MDI) entering the high-θe boundary layer. This updraft and the MDI in the downshear-left quadrant accelerated the tangential winds in a radial range where the axisymmetric wind maximum of the secondary eyewall soon developed. This same quadrant eventually exhibited the strongest overturning circulation and wind maximum of the forming secondary eyewall. Given these features occurring in succession in the downshear-left quadrant, we hypothesize that the MDI plays a significant dynamical role in SEF. The MDI within a mature rainband complex persistently perturbs the boundary layer, which locally forces enhanced convection and tangential winds. These perturbations provide steady low-level forcing that projects strongly onto the axisymmetric field, and forges the way for secondary eyewall development via one of several SEF theories that invoke axisymmetric dynamical processes.


2016 ◽  
Vol 73 (10) ◽  
pp. 3911-3930 ◽  
Author(s):  
Hui Wang ◽  
Chun-Chieh Wu ◽  
Yuqing Wang

Abstract The secondary eyewall formation (SEF) in an idealized simulation of a tropical cyclone (TC) is examined from the perspective of both the balanced and unbalanced dynamics and through the tangential wind (Vt) budget analysis. It is found that the expansion of the azimuthal-mean Vt above the boundary layer occurs prior to the development of radial moisture convergence in the boundary layer. The Vt expansion results primarily from the inward angular momentum transport by the mid- to lower-tropospheric inflow induced by both convective and stratiform heating in the spiral rainbands. In response to the Vt broadening is the development of radial inflow convergence and the supergradient flow near the top of the inflow boundary layer. Results from the Vt budget analysis show that the combined effect of the mean advection and the surface friction is to spin down Vt in the boundary layer, while the eddy processes (eddy radial and vertical advection) contribute positively to the spinup of Vt in the SEF region in the boundary layer. Therefore, eddies play an important role in the spinup of Vt in the boundary layer during SEF. The balanced Sawyer–Eliassen solution can well capture the secondary circulation in the full-physics model simulation. The radial inflow diagnosed from the Sawyer–Eliassen equation is shown to spin up Vt and maintain the vortex above the boundary layer. However, the axisymmetric balanced dynamics cannot explain the spinup of Vt in the boundary layer, which results mainly from the eddy processes.


2014 ◽  
Vol 71 (10) ◽  
pp. 3723-3738 ◽  
Author(s):  
Sergio F. Abarca ◽  
Michael T. Montgomery

Abstract Departures from axisymmetric balance dynamics are quantified during a case of secondary eyewall formation. The case occurred in a three-dimensional mesoscale convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation exhibits a canonical eyewall replacement cycle. Departures from balance dynamics are quantified by comparing the azimuthally averaged secondary circulation and corresponding tangential wind tendencies of the mesoscale integration with those diagnosed as the axisymmetric balanced response of a vortex subject to diabatic and tangential momentum forcing. Balance dynamics is defined here, following the tropical cyclone literature, as those processes that maintain a vortex in axisymmetric thermal wind balance. The dynamical and thermodynamical fields needed to characterize the background vortex for the Sawyer–Eliassen inversion are obtained by azimuthally averaging the relevant quantities in the mesoscale integration and by computing their corresponding balanced fields. Substantial differences between azimuthal averages and their homologous balance-derived fields are found in the boundary layer. These differences illustrate the inappropriateness of the balance assumption in this region of the vortex (where the secondary eyewall tangential wind maximum emerges). Although the balance model does broadly capture the sense of the forced transverse (overturning) circulation, the balance model is shown to significantly underestimate the inflow in the boundary layer. This difference translates to unexpected qualitative differences in the tangential wind tendency. The main finding is that balance dynamics does not capture the tangential wind spinup during the simulated secondary eyewall formation event.


Author(s):  
Yuqing Wang ◽  
Yuanlong Li ◽  
Jing Xu

AbstractIn this study, the boundary-layer tangential wind budget equation following the radius of maximum wind, together with an assumed thermodynamical quasi-equilibrium boundary layer is used to derive a new equation for tropical cyclone (TC) intensification rate (IR). A TC is assumed to be axisymmetric in thermal wind balance with eyewall convection becoming in moist slantwise neutrality in the free atmosphere above the boundary layer as the storm intensifies as found recently based on idealized numerical simulations. An ad-hoc parameter is introduced to measure the degree of congruence of the absolute angular momentum and the entropy surfaces. The new IR equation is evaluated using results from idealized ensemble full-physics axisymmetric numerical simulations. Results show that the new IR equation can reproduce the time evolution of the simulated TC intensity. The new IR equation indicates a strong dependence of IR on both TC intensity and the corresponding maximum potential intensity (MPI). A new finding is the dependence of TC IR on the square of the MPI in terms of the near-surface wind speed for any given relative intensity. Results from some numerical integrations of the new IR equation also suggest the finite-amplitude nature of TC genesis. In addition, the new IR theory is also supported by some preliminary results based on best-track TC data over the North Atlantic and eastern and western North Pacific. Compared with the available time-dependent theories of TC intensification, the new IR equation can provide a realistic intensity-dependent IR during weak intensity stage as in observations.


Author(s):  
Muhammad Naufal Razin ◽  
Michael M. Bell

AbstractHurricane Ophelia (2005) underwent an unconventional eyewall replacement cycle (ERC) as it was a Category 1 storm located over cold sea surface temperatures near 23°C. The ERC was analyzed using airborne radar, flight-level, and dropsonde data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) intensive observation period on 11 September 2005. Results showed that the spin-up of the secondary tangential wind maximum during the ERC can be attributed to the efficient convergence of absolute angular momentum by the mid-level inflow of Ophelia’s dominantly stratiform rainbands. This secondary tangential wind maximum strongly contributed to the azimuthal mean tangential wind field, which is conducive for increased low-level supergradient winds and corresponding outflow. The low-level supergradient forcing enhanced convergence to form a secondary eyewall. Ophelia provides a unique example of an ERC occurring in a weaker storm with predominantly stratiform rainbands, suggesting an important role of stratiform precipitation processes in the development of secondary eyewalls.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 158 ◽  
Author(s):  
Yifang Ren ◽  
Jun A. Zhang ◽  
Jonathan L. Vigh ◽  
Ping Zhu ◽  
Hailong Liu ◽  
...  

This study analyses Global Positioning System dropsondes to document the axisymmetric tropical cyclone (TC) boundary-layer structure, based on storm intensity. A total of 2608 dropsondes from 42 named TCs in the Atlantic basin from 1998 to 2017 are used in the composite analyses. The results show that the axisymmetric inflow layer depth, the height of maximum tangential wind speed, and the thermodynamic mixed layer depth are all shallower in more intense TCs. The results also show that more intense TCs tend to have a deep layer of the near-saturated air inside the radius of maximum wind speed (RMW). The magnitude of the radial gradient of equivalent potential temperature (θe) near the RMW correlates positively with storm intensity. Above the inflow layer, composite structures of TCs with different intensities all possess a ring of anomalously cool temperatures surrounding the warm-core, with the magnitude of the warm-core anomaly proportional to TC intensity. The boundary layer composites presented here provide a climatology of how axisymmetric TC boundary layer structure changes with intensity.


2019 ◽  
Vol 76 (8) ◽  
pp. 2309-2334 ◽  
Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

Abstract Given comparable background vertical wind shear (VWS) magnitudes, the initially imposed shear-relative low-level mean flow (LMF) is hypothesized to modify the structure and convective features of a tropical cyclone (TC). This study uses idealized Weather Research and Forecasting Model simulations to examine TC structure and convection affected by various LMFs directed toward eight shear-relative orientations. The simulated TC affected by an initially imposed LMF directed toward downshear left yields an anomalously high intensification rate, while an upshear-right LMF yields a relatively high expansion rate. These two shear-relative LMF orientations affect the asymmetry of both surface fluxes and frictional inflow in the boundary layer and thus modify the TC convection. During the early development stage, the initially imposed downshear-left LMF promotes inner-core convection because of high boundary layer moisture fluxes into the inner core and is thus favorable for TC intensification because of large radial fluxes of azimuthal mean vorticity near the radius of maximum wind in the boundary layer. However, TCs affected by various LMFs may modify the near-TC VWS differently, making the intensity evolution afterward more complicated. The TC with a fast-established eyewall in response to the downshear-left LMF further reduces the near-TC VWS, maintaining a relatively high intensification rate. For the upshear-right LMF that leads to active and sustained rainbands in the downshear quadrants, TC size expansion is promoted by a positive radial flux of eddy vorticity near the radius of 34-kt wind (1 kt ≈ 0.51 m s−1) because the vorticity associated with the rainbands is in phase with the storm-motion-relative inflow.


Sign in / Sign up

Export Citation Format

Share Document