scholarly journals Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget

2011 ◽  
Vol 24 (19) ◽  
pp. 5061-5080 ◽  
Author(s):  
John M. Haynes ◽  
Christian Jakob ◽  
William B. Rossow ◽  
George Tselioudis ◽  
Josephine Brown

Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79% of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.

2017 ◽  
Vol 30 (23) ◽  
pp. 9455-9474 ◽  
Author(s):  
Casey J. Wall ◽  
Dennis L. Hartmann ◽  
Po-Lun Ma

Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the midtroposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm and cold sectors of cyclones. The observed relationships between clouds and meteorology are compared to those in the Community Atmosphere Model, version 5 (CAM5), using satellite simulators. Low clouds simulated by CAM5 are too few, are too bright, and contain too much ice. In the cold sector of cyclones, the low clouds are also too sensitive to variations in the meteorology. When CAM5 is coupled with an updated boundary layer parameterization known as Cloud Layers Unified by Binormals (CLUBB), bias in the ice content of low clouds is dramatically reduced. More generally, this study demonstrates that examining the instantaneous time scale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.


2020 ◽  
Author(s):  
Shuyi Chen ◽  
Brandon Kerns

<p>Precipitation is a highly complex, multiscale entity in the global weather and climate system. It is affected by both global and local circulations over a wide range of time scales from hours to weeks and beyond. It is also an important measure of the water and energy cycle in climate models. To better understand the physical processes controlling precipitation in climate models, we need to evaluate precipitation not only in in terms of its global climatological distribution but also multiscale variability in time and space.</p><p>This study presents a new set of metrics to quantify characteristics of global precipitation using 20-years the TRMM-GPM Multisatellite Precipitation Analysis (TMPA) data from June 1998 to May 2018 over the global tropics-midlatitudes (50°S – 50°N) with 3-hourly and 0.25-degree resolutions.  We developed a method to identify large-scale precipitation objects (LPOs) using a temporal-spatial filter and then track the LPOs in time, namely the Large-scale Precipitation Tracking systems (LPTs) as described in Kerns and Chen (2016, 2020, JGR-Atmos). The most unique feature of this method is that it can distinguish large-scale precipitation organized by, for example, monsoons and the Madden-Julian Oscillation (MJO), from that of mesoscale and synoptic scale weather systems, as well as those relatively stationary local topographically and diurnally forced precipitation. The new precipitation metrics based on the satellite observation are used to evaluate climate models.  Early results show that most models overproduce precipitation over land in non-LPTs and underestimate large-scale precipitation (LPTs) over the oceans compared with the observations. For example, the MJO contributes up to 40-50% of the observed annual precipitation over the Indio-Pacific warm pool region, which are usually much less in the models because of models’ inability to represent the MJO dynamics. Furthermore, the spatial variability of precipitation associated with ENSO is more pronounced in the observations than models.</p>


2020 ◽  
Vol 33 (3) ◽  
pp. 925-940
Author(s):  
Malcolm J. King ◽  
Christian Jakob

AbstractConvection over the western equatorial Indian Ocean (WEIO) is strongly linked to precipitation over Africa and Australia but is poorly represented in current climate models, and its observed seasonal cycle is poorly understood. This study investigates the seasonal cycle of convection in the WEIO through rainfall and cloud measurements. Rainfall shows a single annual peak in early austral summer, but cloud proxies identify convective activity maxima in both boreal and austral summer. These diverging measures of convection during boreal summer are indicative of a reduction in the intensity of precipitation associated with a given cloud regime or cloud-top height during this time of year but an increase in the overall occurrence of high-top clouds and convectively active cloud regimes. The change in precipitation intensity associated with regimes is found to explain most of the changes in total precipitation during the period from May to November, whereas changes in the occurrence of convective regimes explains most of the changes throughout the rest of the year. The reduction in precipitation intensities associated with cloud regimes over the WEIO during boreal summer appears to be related to large-scale monsoon circulations, which suppress convection through forcing air descent in the midtroposphere and increase the apparent occurrence of convectively active cloud regimes through the advection of high-level cloud from monsoon-active areas toward the WEIO region.


2019 ◽  
Vol 32 (5) ◽  
pp. 1573-1590 ◽  
Author(s):  
G. Cesana ◽  
D. E. Waliser ◽  
D. Henderson ◽  
T. S. L’Ecuyer ◽  
X. Jiang ◽  
...  

Abstract We assess the vertical distribution of radiative heating rates (RHRs) in climate models using a multimodel experiment and A-Train satellite observations, for the first time. As RHRs rely on the representation of cloud amount and properties, we first compare the modeled vertical distribution of clouds directly against lidar–radar combined cloud observations (i.e., without simulators). On a near-global scale (50°S–50°N), two systematic differences arise: an excess of high-level clouds around 200 hPa in the tropics, and a general lack of mid- and low-level clouds compared to the observations. Then, using RHR profiles calculated with constraints from A-Train and reanalysis data, along with their associated maximum uncertainty estimates, we show that the excess clouds and ice water content in the upper troposphere result in excess infrared heating in the vicinity of and below the clouds as well as a lack of solar heating below the clouds. In the lower troposphere, the smaller cloud amount and the underestimation of cloud-top height is coincident with a shift of the infrared cooling to lower levels, substantially reducing the greenhouse effect, which is slightly compensated by an erroneous excess absorption of solar radiation. Clear-sky RHR differences between the observations and the models mitigate cloudy RHR biases in the low levels while they enhance them in the high levels. Finally, our results indicate that a better agreement between observed and modeled cloud profiles could substantially improve the RHR profiles. However, more work is needed to precisely quantify modeled cloud errors and their subsequent effect on RHRs.


2018 ◽  
Vol 18 (14) ◽  
pp. 10177-10198 ◽  
Author(s):  
Sonya L. Fiddes ◽  
Matthew T. Woodhouse ◽  
Zebedee Nicholls ◽  
Todd P. Lane ◽  
Robyn Schofield

Abstract. Natural aerosol emission represents one of the largest uncertainties in our understanding of the radiation budget. Sulfur emitted by marine organisms, as dimethyl sulfide (DMS), constitutes one-fifth of the global sulfur budget and yet the distribution, fluxes and fate of DMS remain poorly constrained. This study evaluates the Australian Community Climate and Earth System Simulator (ACCESS) United Kingdom Chemistry and Aerosol (UKCA) model in terms of cloud fraction, radiation and precipitation, and then quantifies the role of DMS in the chemistry–climate system. We find that ACCESS-UKCA has similar cloud and radiation biases to other global climate models. By removing all DMS, or alternatively significantly enhancing marine DMS, we find a top of the atmosphere radiative effect of 1.7 and −1.4 W m−2 respectively. The largest responses to these DMS perturbations (removal/enhancement) are in stratiform cloud decks in the Southern Hemisphere's eastern ocean basins. These regions show significant differences in low cloud (-9/+6 %), surface incoming shortwave radiation (+7/-5 W m−2) and large-scale rainfall (+15/-10 %). We demonstrate a precipitation suppression effect of DMS-derived aerosol in stratiform cloud deck regions due to DMS, coupled with an increase in low cloud fraction. The difference in low cloud fraction is an example of the aerosol lifetime effect. Globally, we find a sensitivity of temperature to annual DMS flux of 0.027 and 0.019 K per Tg yr−1 of sulfur, respectively. Other areas of low cloud formation, such as the Southern Ocean and stratiform cloud decks in the Northern Hemisphere, have a relatively weak response to DMS perturbations. We highlight the need for greater understanding of the DMS–climate cycle within the context of uncertainties and biases of climate models as well as those of DMS–climate observations.


2014 ◽  
Vol 27 (16) ◽  
pp. 6189-6203 ◽  
Author(s):  
Shannon Mason ◽  
Christian Jakob ◽  
Alain Protat ◽  
Julien Delanoë

Abstract Clouds strongly affect the absorption and reflection of shortwave and longwave radiation in the atmosphere. A key bias in climate models is related to excess absorbed shortwave radiation in the high-latitude Southern Ocean. Model evaluation studies attribute these biases in part to midtopped clouds, and observations confirm significant midtopped clouds in the zone of interest. However, it is not yet clear what cloud properties can be attributed to the deficit in modeled clouds. Present approaches using observed cloud regimes do not sufficiently differentiate between potentially distinct types of midtopped clouds and their meteorological contexts. This study presents a refined set of midtopped cloud subregimes for the high-latitude Southern Ocean, which are distinct in their dynamical and thermodynamic background states. Active satellite observations from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are used to study the macrophysical structure and microphysical properties of the new cloud regimes. The subgrid-scale variability of cloud structure and microphysics is quantified within the cloud regimes by identifying representative physical cloud profiles at high resolution from the radar–lidar (DARDAR) cloud classification mask. The midtopped cloud subregimes distinguish between stratiform clouds under a high inversion and moderate subsidence; an optically thin cold-air advection cloud regime occurring under weak subsidence and including altostratus over low clouds; optically thick clouds with frequent deep structures under weak ascent and warm midlevel anomalies; and a midlevel convective cloud regime associated with strong ascent and warm advection. The new midtopped cloud regimes for the high-latitude Southern Ocean will provide a refined tool for model evaluation and the attribution of shortwave radiation biases to distinct cloud processes and properties.


2008 ◽  
Vol 65 (7) ◽  
pp. 2107-2129 ◽  
Author(s):  
Xiaoqing Wu ◽  
Sunwook Park ◽  
Qilong Min

Abstract Increased observational analyses provide a unique opportunity to perform years-long cloud-resolving model (CRM) simulations and generate long-term cloud properties that are very much in demand for improving the representation of clouds in general circulation models (GCMs). A year 2000 CRM simulation is presented here using the variationally constrained mesoscale analysis and surface measurements. The year-long (3 January–31 December 2000) CRM surface precipitation is highly correlated with the Atmospheric Radiation Measurement (ARM) observations with a correlation coefficient of 0.97. The large-scale forcing is the dominant factor responsible for producing the precipitation in summer, spring, and fall, but the surface heat fluxes play a more important role during winter when the forcing is weak. The CRM-simulated year-long cloud liquid water path and cloud (liquid and ice) optical depth are also in good agreement (correlation coefficients of 0.73 and 0.64, respectively) with the ARM retrievals over the Southern Great Plains (SGP). The simulated cloud systems have 50% more ice water than liquid water in the annual mean. The vertical distributions of ice and liquid water have a single peak during spring (March–May) and summer (June–August), but a second peak occurs near the surface during winter (December–February) and fall (September–November). The impacts of seasonally varied cloud water are very much reflected in the cloud radiative forcing at the top-of-atmosphere (TOA) and the surface, as well as in the vertical profiles of radiative heating rates. The cloudy-sky total (shortwave and longwave) radiative heating profile shows a dipole pattern (cooling above and warming below) during spring and summer, while a second peak of cloud radiative cooling appears near the surface during winter and fall.


2020 ◽  
Author(s):  
Ying Liu ◽  
Rodrigo Caballero ◽  
Joy Merwin Monteiro

Abstract. Simulating global and regional climate at high resolution is essential to study the effects of climate change and capture extreme events affecting human populations. To achieve this goal, the scalability of climate models and the efficiency of individual model components are both important. Radiative transfer is among the most computationally expensive components in a typical climate model. Here we attempt to model this component using a neural network. We aim to study the feasibility of replacing an explicit, physics-based computation of longwave radiative transfer by a neural network emulator, and assessing the resultant performance gains. We compare multiple neural-network architectures, including a convolutional neural network and our results suggest that the performance loss from the use of convolutional networks is not offset by gains in accuracy. We train the networks with and without noise added to the input profiles and find that adding noise improves the ability of the networks to generalise beyond the training set. Prediction of radiative heating rates using our neural network models achieve up to 370x speedup on a GTX 1080 GPU setup and 11x speedup on a Xeon CPU setup compared to the a state of the art radiative transfer library running on the same Xeon CPU. Furthermore, our neural network models yield less than 0.1 Kelvin per day mean squared error across all pressure levels. Upon introducing this component into a single column model, we find that the time evolution of the temperature and humidity profiles are physically reasonable, though the model is conservative in its prediction of heating rates in regions where the optical depth changes quickly. Differences exist in the equilibrium climate simulated when using the neural networks, which are attributed to small systematic errors that accumulate over time. Thus, we find that the accuracy of the neural network in the "offline" mode does not reflect its performance when coupled with other components.


2018 ◽  
Vol 31 (14) ◽  
pp. 5609-5628 ◽  
Author(s):  
Baoqiang Xiang ◽  
Ming Zhao ◽  
Yi Ming ◽  
Weidong Yu ◽  
Sarah M. Kang

Abstract Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiative heating in the SO (50°–80°S) versus the southern tropics (ST; 0°–20°S). Results demonstrate that the ITCZ position response to the ST forcing is twice as strong as the SO forcing, which is primarily driven by the contrasting sea surface temperature (SST) gradient over the tropics; however, the mechanism for the formation of the SST pattern remains elusive. Energy budget analysis reveals that the conventional energetic constraint framework is inadequate in explaining the ITCZ shift in these two perturbed experiments. For both cases, the anomalous Hadley circulation does not contribute to transport the imposed energy from the Southern Hemisphere to the Northern Hemisphere, given a positive mean gross moist stability in the equatorial region. Changes in the cross-equatorial atmospheric energy are primarily transported by atmospheric transient eddies when the anomalous ITCZ shift is most pronounced during December–May. The partitioning of energy transport between the atmosphere and ocean shows latitudinal dependence: the atmosphere and ocean play an overall equivalent role in transporting the imposed energy for the extratropical SO forcing, while for the ST forcing, the imposed energy is nearly completely transported by the atmosphere. This contrast originates from the different ocean heat uptake and also the different meridional scale of the anomalous ocean circulation.


2015 ◽  
Vol 15 (21) ◽  
pp. 29939-29971
Author(s):  
C. M. Hoppe ◽  
F. Ploeger ◽  
P. Konopka ◽  
R. Müller

Abstract. The representation of vertical velocity in chemistry climate models is a key element for the representation of the large scale Brewer–Dobson-Circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Messy Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10 year simulation are provided for both, kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows younger mean age of air in the inner tropical upwelling branch and older mean age in the extratopical tropopause region.


Sign in / Sign up

Export Citation Format

Share Document