Remote Sensing of Tropical Cyclones: Observations from CloudSat and A-Train Profilers

2015 ◽  
Vol 96 (4) ◽  
pp. 609-622 ◽  
Author(s):  
Natalie Tourville ◽  
Graeme Stephens ◽  
Mark DeMaria ◽  
Deborah Vane

CloudSat (CS) heralded a new era of profiling the planet’s cloud systems and storms with its launch in 2006. This satellite flies the first 94-GHz spaceborne Cloud Profiling Radar, and the data collected have provided a unique perspective on Earth’s cloudiness and processes that affect clouds. CS flies in formation with the afternoon satellite constellation, a collection of active and passive satellite sensors offering near-simultaneous observations of the same cloud phenomena. While passes of the nadir-pointing Cloud Profiling Radar (CPR) antenna occur infrequently over tropical cyclones, they happen enough to provide a detailed compilation of the inner structure of clouds and precipitation of these complex storm systems. Nearly 8,000 vertical profiles of TCs have been collected during the period June 2006–December 2013 and observations continue as CS flies in daylight-only mode. These observations have been assembled into a one-of-a-kind dataset of three-dimensional features revealing precipitation areas, moats, and multilayered clouds. Each unique overpass profiled by CS has been compiled with corresponding A-Train sensors, model data, and storm-specific best-track information. The multisensor components of the CS and A-Train TC dataset together with these other data are summarized and cataloged as a function of radial distance from storm center. Example imagery is provided along with stratified reflectivity profiles detailing changes in storm structures across varying environmental shear conditions. The data reported on in this paper offer an unprecedented view of these major storm types and their inner structure.

2020 ◽  
Vol 287 (1920) ◽  
pp. 20192383 ◽  
Author(s):  
Tim D'Urban Jackson ◽  
Gareth J. Williams ◽  
Guy Walker-Springett ◽  
Andrew J. Davies

Ecological processes occur over multiple spatial, temporal and thematic scales in three-dimensional (3D) ecosystems. Characterizing and monitoring change in 3D structure at multiple scales is challenging within the practical constraints of conventional ecological tools. Remote sensing from satellites and crewed aircraft has revolutionized broad-scale spatial ecology, but fine-scale patterns and processes operating at sub-metre resolution have remained understudied over continuous extents. We introduce two high-resolution remote sensing tools for rapid and accurate 3D mapping in ecology—terrestrial laser scanning and structure-from-motion photogrammetry. These technologies are likely to become standard sampling tools for mapping and monitoring 3D ecosystem structure across currently under-sampled scales. We present practical guidance in the use of the tools and address barriers to widespread adoption, including testing the accuracy of structure-from-motion models for ecologists. We aim to highlight a new era in spatial ecology that uses high-resolution remote sensing to interrogate 3D digital ecosystems.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
P. Kim ◽  
R. Jorge ◽  
W. Dorland

A simplified analytical form of the on-axis magnetic well and Mercier's criterion for interchange instabilities for arbitrary three-dimensional magnetic field geometries is derived. For this purpose, a near-axis expansion based on a direct coordinate approach is used by expressing the toroidal magnetic flux in terms of powers of the radial distance to the magnetic axis. For the first time, the magnetic well and Mercier's criterion are then written as a one-dimensional integral with respect to the axis arclength. When compared with the original work of Mercier, the derivation here is presented using modern notation and in a more streamlined manner that highlights essential steps. Finally, these expressions are verified numerically using several quasisymmetric and non-quasisymmetric stellarator configurations including Wendelstein 7-X.


2014 ◽  
Vol 53 (15) ◽  
pp. 3301 ◽  
Author(s):  
Zhongping Lee ◽  
Shaoling Shang ◽  
Chuanmin Hu ◽  
Giuseppe Zibordi

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 951-960
Author(s):  
Haiqing Zhang ◽  
Jun Han

Abstract Traditionally, three-dimensional model is used to classify and recognize multi-target optical remote sensing image information, which can only identify a specific class of targets, and has certain limitations. A mathematical model of multi-target optical remote sensing image information classification and recognition is designed, and a local adaptive threshold segmentation algorithm is used to segment multi-target optical remote sensing image to reduce the gray level between images and improve the accuracy of feature extraction. Remote sensing image information is multi-feature, and multi-target optical remote sensing image information is identified by chaotic time series analysis method. The experimental results show that the proposed model can effectively classify and recognize multi-target optical remote sensing image information. The average recognition rate is more than 95%, the maximum robustness is 0.45, the recognition speed is 98%, and the maximum time-consuming average is only 14.30 s. It has high recognition rate, robustness, and recognition efficiency.


2021 ◽  
Vol 11 (8) ◽  
pp. 713
Author(s):  
Manako Yamaguchi ◽  
Kosuke Yoshihara ◽  
Nozomi Yachida ◽  
Kazuaki Suda ◽  
Ryo Tamura ◽  
...  

The histology of the endometrium has traditionally been established by observation of two-dimensional (2D) pathological sections. However, because human endometrial glands exhibit coiling and branching morphology, it is extremely difficult to obtain an entire image of the glands by 2D observation. In recent years, the development of three-dimensional (3D) reconstruction of serial pathological sections by computer and whole-mount imaging technology using tissue clearing methods with high-resolution fluorescence microscopy has enabled us to observe the 3D histoarchitecture of tissues. As a result, 3D imaging has revealed that human endometrial glands form a plexus network in the basalis, similar to the rhizome of grass, whereas mouse uterine glands are single branched tubular glands. This review summarizes the relevant literature on the 3D structure of mouse and human endometrium and discusses the significance of the rhizome structure in the human endometrium and the expected role of understanding the 3D tissue structure in future applications to systems biology.


Sensors ◽  
2009 ◽  
Vol 9 (6) ◽  
pp. 4380-4389 ◽  
Author(s):  
Man Sing Wong ◽  
Janet Nichol ◽  
Kwon Ho Lee

2004 ◽  
Vol 38 (39) ◽  
pp. 6679-6685 ◽  
Author(s):  
B. Padma Kumari ◽  
A.L. Londhe ◽  
H.K. Trimbake ◽  
D.B. Jadhav

2017 ◽  
Author(s):  
Guillaume Mioche ◽  
Olivier Jourdan ◽  
Julien Delanoë ◽  
Christophe Gourbeyre ◽  
Guy Febvre ◽  
...  

Abstract. This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPC). We compiled and analyzed cloud in situ measurements from 4 airborne campaigns (18 flights, 71 vertical profiles in MPC) over the Greenland Sea and the Svalbard region. Cloud phase discrimination and representative vertical profiles of number, size, mass and shapes of ice crystals and liquid droplets are assessed. The results show that the liquid phase dominates the upper part of the MPC with high concentration of small droplets (120 cm−3, 15&tinsp;μm), and averaged LWC around 0.2 g m−3. The ice phase is found everywhere within the MPC layers, but dominates the properties in the lower part of the cloud and below where ice crystals precipitate down to the surface. The analysis of the ice crystal morphology highlights that irregulars and rimed are the main particle habit followed by stellars and plates. We hypothesize that riming and condensational growth processes (including the Wegener-Bergeron-Findeisein mechanism) are the main growth mechanisms involved in MPC. The differences observed in the vertical profiles of MPC properties from one campaign to another highlight that large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations which lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling are also determined, such as IWC (and LWC) – extinction relationship, ice and liquid integrated water paths, ice concentration and liquid water fraction according to temperature. Finally, 4 flights collocated with active remote sensing observations from CALIPSO and CloudSat satellites are specifically analyzed to evaluate the cloud detection and cloud thermodynamical phase DARDAR retrievals. This comparison is valuable to assess the sub-pixel variability of the satellite measurements as well as their shortcomings/performance near the ground.


2007 ◽  
Vol 98 (4) ◽  
pp. 2439-2455 ◽  
Author(s):  
J. Alexander Birdwell ◽  
Joseph H. Solomon ◽  
Montakan Thajchayapong ◽  
Michael A. Taylor ◽  
Matthew Cheely ◽  
...  

Rats use active, rhythmic movements of their whiskers to acquire tactile information about three-dimensional object features. There are no receptors along the length of the whisker; therefore all tactile information must be mechanically transduced back to receptors at the whisker base. This raises the question: how might the rat determine the radial contact position of an object along the whisker? We developed two complementary biomechanical models that show that the rat could determine radial object distance by monitoring the rate of change of moment (or equivalently, the rate of change of curvature) at the whisker base. The first model is used to explore the effects of taper and inherent whisker curvature on whisker deformation and used to predict the shapes of real rat whiskers during deflections at different radial distances. Predicted shapes closely matched experimental measurements. The second model describes the relationship between radial object distance and the rate of change of moment at the base of a tapered, inherently curved whisker. Together, these models can account for recent recordings showing that some trigeminal ganglion (Vg) neurons encode closer radial distances with increased firing rates. The models also suggest that four and only four physical variables at the whisker base—angular position, angular velocity, moment, and rate of change of moment—are needed to describe the dynamic state of a whisker. We interpret these results in the context of our evolving hypothesis that neural responses in Vg can be represented using a state-encoding scheme that includes combinations of these four variables.


2018 ◽  
Vol 176 ◽  
pp. 08012
Author(s):  
Rei Kudo ◽  
Tomoaki Nishizawa ◽  
Akiko Higurashi ◽  
Eiji Oikawa

For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.


Sign in / Sign up

Export Citation Format

Share Document