scholarly journals The Dark Side of Hurricane Matthew: Unique Perspectives from the VIIRS Day/Night Band

2018 ◽  
Vol 99 (12) ◽  
pp. 2561-2574 ◽  
Author(s):  
Steven D. Miller ◽  
William C. Straka ◽  
Jia Yue ◽  
Curtis J. Seaman ◽  
Shuang Xu ◽  
...  

AbstractHurricane Matthew (28 September–9 October 2016) was perhaps the most infamous storm of the 2016 Atlantic hurricane season, claiming over 600 lives and causing over $15 billion (U.S. dollars) in damages across the central Caribbean and southeastern U.S. seaboard. Research surrounding Matthew and its many noteworthy meteorological characteristics (e.g., rapid intensification into the southernmost category 5 hurricane in the Atlantic basin on record, strong lightning and sprite production, and unusual cloud morphology) is ongoing. Satellite remote sensing typically plays an important role in the forecasting and study of hurricanes, providing a top-down perspective on storms developing over the remote and inherently data-sparse tropical oceans. In this regard, a relative newcomer among the suite of satellite observations useful for tropical cyclone monitoring and research is the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band (DNB), a sensor flying on board the NOAA–NASA Suomi National Polar-Orbiting Partnership (SNPP) satellite. Unlike conventional instruments, the DNB’s sensitivity to extremely low levels of visible and near-infrared light offers new insight into storm properties and impacts. Here, we chronicle Matthew’s path of destruction and peer through the DNB’s looking glass of low-light visible observations, including lightning connected to sprite formation, modulation of the atmospheric nightglow by storm-generated gravity waves, and widespread power outages. Collected without moonlight, these examples showcase the wealth of unique information present in DNB nocturnal low-light observations without moonlight, and their potential to complement traditional satellite measurements of tropical storms worldwide.

2006 ◽  
Vol 2 (S237) ◽  
pp. 447-447
Author(s):  
Satoshi Mayama ◽  
Motohide Tamura ◽  
Masahiko Hayashi

AbstractRNO91 is class II source currently in a transition phase between a protostar and a main-sequence star. It is known as a source of complex molecular outflows. Previous studies suggested that RNO91 was associated with a reflection nebula, a CO outflow, shock-excited H2 emission, and disk type structure. But the geometry of RNO91, especially its inner region, is not well confirmed yet. High resolution imaging is needed to understand the nature of RNO91 and its interaction with outflow. Thus, we conducted near-infrared imaging observations of RNO91 with the infrared camera CIAO mounted on the Subaru 8.2-m Telescope. We presented JHK band and optical images which resolved a complex asymmetrical circumstellar structure. We examined the color of RNO91 nebula and compared the geometry of the system suggested by our data with that already proposed on the basis of other studies. Our main results are as follows; 1. The K-band images show significant halo emission detected within ~2″ around the peak position while less halo emission is seen in shorter wavelength images such as J and optical. The nebula appears to become more circular and more diffuse with increasing wavelengths. The cut-off at 300AU derived from our radial surface brightness is consistent with the size of the polarization disk suggested by Draper & Tadhunter (1993). These consistencies indicate that this optically thick region is attributed to a disk-like structure.2. At J and optical, several bluer knot-like structures are detected around and beyond the halo emission. These bluer knots seen in our images are comparable to the size of the envelope detected in HCO+ emission surrounding RNO91 (Lee & Ho 2005). It is thus natural to suggest that these bluer knots are the near-infrared light scattered by an envelope structure which is disrupted by molecular outflows.3. The pseudo-true color composite image has an appearance of arc-shaped emission extending to the north and to the east through RNO91. On the counter part of this arc-shaped structure, the nebula appears to become more extended to the southwest from the central peak position in J band and optical images. We interpret these whole structures as a bottom of bipolar cavity seen relatively edge-on opening to the north and south directions.


2019 ◽  
Vol 5 (S1) ◽  
Author(s):  
Himanshu K. Banda ◽  
Anjali Shah ◽  
Gaurav K. Shah

Abstract Background Retinoschisis and retinal detachment are distinguished based on features in clinical examination. Even to skilled examiners, some cases may be diagnostic challenges. Infrared and wide-angle infrared reflectance imaging are relatively new modalities that can provide additional diagnostic information. Non-contact infrared reflectance imaging (also described as near-infrared imaging) highlights sub-retinal features which may otherwise be obscured by standard retinal photography. It is non-invasive and uses the retina’s ability to absorb, reflect or scatter infrared light to produce high quality images. Main body The aim of this review is to describe the role of wide-field infrared imaging in screening, diagnosing, and monitoring structural peripheral retinal disorders including retinoschisis, retinal detachment or combined retinoschisis rhegmatogenous detachments. Infrared imaging can also be used to monitor anterior segment inflammation. Heidelberg Wide-Field Module lens and Heidelberg Spectralis® HRA + OCT machine (Heidelberg Engineering, Heidelberg, Germany) were used to obtain noncontact, wide-field infrared images on each study eye. Pseudocolor photos were captured by Optos Optomap® (Optos, Inc, Massachusetts, USA). Conclusion Wide angle infrared imaging offers a quick, noncontact, and noninvasive way to help specialists accurately diagnose, monitor for progression, and educate patients about retinal detachment, retinoschisis and even anterior segment inflammation.


2021 ◽  
Author(s):  
Wenting Shang ◽  
Li Peng ◽  
Kunshan He ◽  
Pengyu Guo ◽  
Han Deng ◽  
...  

Abstract Bladder cancer is the fifth most common malignancy in humans. Cystoscopy under white light imaging is the gold standard for bladder cancer diagnosis, but these tumors are difficult to visualize and can be overlooked, resulting in high recurrence rates. We previously developed a phage display-derived peptide-based near-infrared imaging probe, PLSWT7-DMI, which binds specifically to bladder cancer cells and is nontoxic to animals. Here, we report the first-in-human application of this probe for near-infrared fluorescence endoscopic detection of bladder cancer. The purity, efficacy, safety, and nontoxicity of the probe were confirmed prior to its clinical application. Twenty-two patients diagnosed with suspected non-muscle invasive bladder cancer were enrolled in the present study. Following intravesical administration of the probe, the entire mucosa was imaged under white and near-infrared imaging using an in-house developed endoscope that could switch between these two modes. The illuminated lesions under near-infrared light were biopsied and sent for histopathological examination. We observed a 5.1-fold increase in the fluorescence intensity in the tumor samples compared to normal tissue, and the probe demonstrated a sensitivity and specificity of 91.2% and 90%, respectively. Common diagnostic challenges, such as small satellite tumors, carcinoma in situ , and benign suspicious mucosa, were visualized and could be distinguished from cancer. Further, no adverse effects were observed in humans. These first-in-human results indicate that PLSWT7-DMI-based near-infrared fluorescence endoscopy is a safe and effective approach for the improved detection of bladder cancer, and may enable thorough resection to prevent recurrence.


2017 ◽  
Vol 20 (K2) ◽  
pp. 91-95
Author(s):  
Tien Van Tran ◽  
Hieu Sy Dau ◽  
Dan Tri Nguyen ◽  
Sang Quoc Huynh ◽  
Linh Quang Huynh

The difficulty of intravenous access in patients is an important clinical issue. Recently, many studies and several devices have been developed to assist physicians, nurses and surgeons in finding veins. Amongst them, near infrared imaging technology is one of the new technologies being widely used in the biomedical. NIR imaging allows visualizing veins underneath the skin of those having non-visibility of veins problem, mapping the normal and abnormal veins in treating disorders, or diagnosing related diseases. In this paper, we will introduce a portable device which can help doctors and nurses visualize blood vessel maps of their patients. On basic of combining a vein infrared imaging method and a projector system, this vein instrument can be optimally designed for viewing veins in the monitor or displaying vessel maps of patients directly on their skin.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3454
Author(s):  
Jinning Li ◽  
Yuhua Gui ◽  
Rui Xu ◽  
Zehong Zhang ◽  
Wei Liu ◽  
...  

Spectrometers based on acousto-optic tunable filters (AOTFs) have several advantages, such as stable temperature adaptability, no moving parts, and wavelength selection through electrical modulation, compared with the traditional grating and Fourier transform spectrometers. Therefore, AOTF spectrometers can realize stable in situ measurement on the lunar surface under wide temperature ranges and low light environments. AOTF imaging spectrometers were first employed for in situ measurement of the lunar surface in the Chinese Chang’e project. The visible and near-infrared imaging spectrometer and the lunar mineralogical spectrometer have been successfully deployed on board the Chang’e-3/4 and Chang’e-5 missions. In this review, we investigate the performance indicators, structural design, selected AOTF performance parameters, data acquisition of the three lunar in situ spectral instruments used in the Chang’e missions. In addition, we also show the scientific achievement of lunar technology based on in situ spectral data.


2017 ◽  
Vol 98 (11) ◽  
pp. 2351-2365 ◽  
Author(s):  
Jeffrey D. Hawkins ◽  
Jeremy E. Solbrig ◽  
Steven D. Miller ◽  
Melinda Surratt ◽  
Thomas F. Lee ◽  
...  

Abstract Global monitoring of tropical cyclones (TC) is enhanced by the unique capabilities provided by the day–night band (DNB), a sensor included on the Visible Infrared Imaging Radiometer Suite (VIIRS) flying on board the Suomi National Polar-Orbiting Partnership (SNPP) satellite. The DNB, a low-light visible–near-infrared-band passive radiometer, can leverage unconventional (i.e., nonsolar) sources of visible light illumination such as moonlight to infer storm structure at night. The DNB provides an unprecedented capability to resolve moonlit clouds at high resolution, offering numerous potential benefits to both operational TC analysts and researchers developing new methods of monitoring TCs occurring within the largely data-void tropical oceanic basins. DNB digital data provide significant enhancements over older nighttime visible data from the Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) by leveraging accurate calibration, high sensitivity, and sub-kilometer-scale imagery that covers 2–3 times the moon’s lunar cycle than the OLS. By leveraging these attributes, DNB data can enable the use of automated objective applications instead of subjective image interpretation. Here, the authors detail ways in which critical information about TC structure, location, intensity changes, shear environment, lightning, and other characteristics can be extracted when the DNB data are used in isolation or in a multichannel approach with coincident infrared (IR) channels.


2021 ◽  
Author(s):  
Wenting Shang ◽  
Li Peng ◽  
Kunshan He ◽  
Pengyu Guo ◽  
Han Deng ◽  
...  

Abstract Purpose Bladder cancer is the fifth most common malignancy in humans. Cystoscopy under white light imaging is the gold standard for bladder cancer diagnosis, but some tumors are difficult to visualize and can be overlooked, resulting in high recurrence rates. Method: We developed a phage display-derived peptide-based near-infrared imaging probe, PLSWT7-DMI, which binds specifically to bladder cancer cells and is nontoxic to animals. Here, we report a clinical research of this probe for near-infrared fluorescence endoscopic detection of bladder cancer. Results The purity, efficacy, safety, and nontoxicity of PLSWT7-DMI were confirmed prior to its clinical application. Twenty-two patients diagnosed with suspected non-muscle invasive bladder cancer were enrolled in the present study. Following intravesical administration of the probe, the entire mucosa was imaged under white and near-infrared imaging using an in-house developed endoscope that could switch between these two modes. The illuminated lesions under near-infrared light were biopsied and sent for histopathological examination. We observed a 5.1-fold increase in the fluorescence intensity in the tumor samples compared to normal tissue, and the probe demonstrated a sensitivity and specificity of 91.2% and 90%, respectively. Common diagnostic challenges, such as small satellite tumors, carcinoma in situ, and benign suspicious mucosa, were visualized and could be distinguished from cancer. Further, no adverse effects were observed in humans. Conclusion These first-in-human results indicate that PLSWT7-DMI-based near-infrared fluorescence endoscopy is a safe and effective approach for the improved detection of bladder cancer, and may enable thorough resection to prevent recurrence.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2317
Author(s):  
Guillaume Noirbent ◽  
Yangyang Xu ◽  
Aude-Héloise Bonardi ◽  
Sylvain Duval ◽  
Didier Gigmes ◽  
...  

Polymerization photoinitiators that can be activated under low light intensity and in the visible range are being pursued by both the academic and industrial communities. To efficiently harvest light and initiate a polymerization process, dyes with high molar extinction coefficients in the visible range are ideal candidates. In this field, Donor-acceptor Stenhouse Adducts (DASA) which belong to a class of recently discovered organic photochromic molecules still lack practical applications. In this work, a series of DASA-based dyes are proposed as photoinitiators for the free radical polymerization of (meth)acrylates upon exposure to a near infrared light (laser diode at 785 nm).


Sign in / Sign up

Export Citation Format

Share Document