scholarly journals Validation and Utility of Satellite Retrievals of Atmospheric Profiles in Detecting and Monitoring Significant Weather Events

Author(s):  
S. Kalluri ◽  
C. Barnet ◽  
M. Divakarla ◽  
R. Esmaili ◽  
N. Nalli ◽  
...  

AbstractInfrared and microwave sounder measurements from polar-orbiting satellites are used to retrieve profiles of temperature, water vapor, and trace gases utilizing a suite of algorithms called the National Oceanic and Atmospheric Administration (NOAA) Unique Combined Atmospheric Processing System (NUCAPS). Meteorologists operationally use the retrievals similar to radiosonde measurements to assess atmospheric stability and aid them in issuing forecasts and severe weather warnings. Measurements of trace gases by NUCAPS enable detection, tracking, and monitoring of greenhouse gases and emissions from fires that impact air quality. During the polar winters, when ultraviolet measurements of ozone are not possible, absorption features in the infrared spectrum of the sounders enable the assessment of ozone concentration in the stratosphere. These retrievals are used as inputs to monitor the ozone hole over Antarctica. This article illustrates the utility of NUCAPS atmospheric profile retrievals in assessing meteorological events using several examples of severe thunderstorms, tropical cyclones, fires, and ozone maps.

2010 ◽  
Vol 27 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Patrick N. Gatlin ◽  
Steven J. Goodman

Abstract An algorithm that provides an early indication of impending severe weather from observed trends in thunderstorm total lightning flash rates has been developed. The algorithm framework has been tested on 20 thunderstorms, including 1 nonsevere storm, which occurred over the course of six separate days during the spring months of 2002 and 2003. The identified surges in lightning rate (or jumps) are compared against 110 documented severe weather events produced by these thunderstorms as they moved across portions of northern Alabama and southern Tennessee. Lightning jumps precede 90% of these severe weather events, with as much as a 27-min advance notification of impending severe weather on the ground. However, 37% of lightning jumps are not followed by severe weather reports. Various configurations of the algorithm are tested, and the highest critical success index attained is 0.49. Results suggest that this lightning jump algorithm may be a useful operational diagnostic tool for severe thunderstorm potential.


Author(s):  
Heather A. Cross ◽  
Dennis Cavanaugh ◽  
Christopher C. Buonanno ◽  
Amy Hyman

For many emergency managers (EMs) and National Weather Service (NWS) forecasters, Convective Outlooks issued by the Storm Prediction Center (SPC) influence the preparation for near-term severe weather events. However, research into how and when EMs utilize that information, and how it influences their emergency operations plan, is limited. Therefore, to better understand how SPC Convective Outlooks are used for severe weather planning, a survey was conducted of NWS core partners in the emergency management sector. The results show EMs prefer to wait until an Enhanced Risk for severe thunderstorms is issued to prepare for severe weather. In addition, the Day 2 Convective Outlook serves as the threshold for higher, value-based decision making. The survey was also used to analyze how the issuance of different risk levels in SPC Convective Outlooks impact emergency management preparedness compared to preparations conducted when a Convective Watch is issued.


Author(s):  
Sean Ernst ◽  
Joe Ripberger ◽  
Makenzie J. Krocak ◽  
Hank Jenkins-Smith ◽  
Carol Silva

AbstractAlthough severe weather forecast products, such as the Storm Prediction Center (SPC) convective outlook, are much more accurate than climatology at day-to-week time scales, tornadoes and severe thunderstorms claim dozens of lives and cause billions of dollars in damage every year. While the accuracy of this outlook has been well documented, less work has been done to explore the comprehension of the product by non-expert users like the general public. This study seeks to fill this key knowledge gap by collecting data from a representative survey of U.S. adults in the lower 48 states about their use and interpretation of the SPC convective outlook. Participants in this study were asked to rank the words and colors used in the outlook from least to greatest risk, and their answers were compared through visualizations and statistical tests across multiple demographics. Results show that the US public ranks the outlook colors similarly to their ordering in the outlook but switch the positions of several of the outlook words as compared to the operational product. Logistic regression models also reveal that more numerate individuals more correctly rank the SPC outlook words and colors. These findings suggest that the words used in the convective outlook may confuse non-expert users, and that future work should continue to use input from public surveys to test potential improvements in the choice of outlook words. Using more easily understood words may help to increase the outlook’s decision support value and potentially reduce the harm caused by severe weather events.


2014 ◽  
Vol 29 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Melissa M. Hurlbut ◽  
Ariel E. Cohen

Abstract An investigation of the environments and climatology of severe thunderstorms from 1999 through 2009 across the northeastern United States is presented. A total of 742 severe weather events producing over 12 000 reports were examined. Given the challenges that severe weather forecasting can present in the Northeast, this study is an effort to distinguish between the more prolific severe-weather-producing events and those that produce only isolated severe weather. The meteorological summer months (June–August) are found to coincide with the peak severe season. During this time, 850–500- and 700–500-hPa lapse rates, mixed layer convective inhibition (MLCIN), and downdraft convective available potential energy (DCAPE) are found to be statistically significant in discriminating events with a large number of reports from those producing fewer reports, based on observed soundings. Composite synoptic pattern analyses are also presented to spatially characterize the distribution of key meteorological variables associated with severe weather events of differing magnitudes. The presence of a midlevel trough and particular characteristics of its tilt, along with an accompanying zone of enhanced flow, are found in association with the higher-report severe weather events, along with cooler midlevel temperatures overlaying warmer low-level temperatures (i.e., contributing to the steeper lapse rates). During the meteorological fall and winter months (September–February), large-scale ascent is often bolstered by the presence of a coupled upper-level jet structure.


2018 ◽  
Vol 56 (1) ◽  
pp. 598-607 ◽  
Author(s):  
Nicholas R. Nalli ◽  
Antonia Gambacorta ◽  
Quanhua Liu ◽  
Changyi Tan ◽  
Flavio Iturbide-Sanchez ◽  
...  

Author(s):  
Alan H. Lockwood

A hotter climate means there will be more heat waves and heat-related illnesses, such as heat exhaustion and heat stroke, the leading causes of weather-related death in the US. Without mitigation, annual world-wide heat-related deaths may exceed 225,000 by 2050. Heat will spawn more extreme weather events such as severe thunderstorms, and tornadoes. Although the number of hurricanes may not increase, the moisture-laden air and warmer oceans will make those that do form more intense and deadly.


2018 ◽  
Vol 56 (1) ◽  
pp. 180-190 ◽  
Author(s):  
Nicholas R. Nalli ◽  
Antonia Gambacorta ◽  
Quanhua Liu ◽  
Christopher D. Barnet ◽  
Changyi Tan ◽  
...  

2008 ◽  
Vol 47 (5) ◽  
pp. 1518-1538 ◽  
Author(s):  
James E. Hocker ◽  
Jeffrey B. Basara

Abstract Oklahoma is a region that is well known for its high frequency of severe thunderstorms, which vary in activity, mode, and coverage. In particular, this region experiences a significant number of highly organized supercell thunderstorms that pose hazards such as high winds, large hail, and tornadoes. This demonstration study focuses on the development and analysis of a 10-yr sample of supercell storms resulting from organized severe weather events in Oklahoma. Geographic information systems (GIS) were used as the primary tool to develop and analyze the 10-yr supercell dataset. The use of GIS technologies within the field of meteorology has increased dramatically in recent years and will likely continue as additional atmospheric science data formats become available in popular GIS software packages such as the Environmental Systems Research Institute’s ArcGIS series. For this specific study, GIS served as a critical component for developing individual georeferenced storm features and analyzing the life span and characteristics of 943 supercell thunderstorms. The results of a series of spatial storm frequency, initiation, termination, and direction analyses are presented. Results revealed that for the period spanning 1994–2003 supercell storms resulting from organized severe weather events were most frequent across several regions, including east-central Oklahoma, southwest Oklahoma, and west-central through northeast Oklahoma, with an overall mean track from the southwest to northeast. Supercell tracks were predominantly southwesterly during the first 5 months of the year, northwesterly from June through September, and once again southwesterly from October through the end of the year. A final set of analyses and examples illustrate the utility of storm feature–based climatologies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco Estrada ◽  
Dukpa Kim ◽  
Pierre Perron

AbstractDue to various feedback processes called Arctic amplification, the high-latitudes’ response to increases in radiative forcing is much larger than elsewhere in the world, with a warming more than twice the global average. Since the 1990’s, this rapid warming of the Arctic was accompanied by no-warming or cooling over midlatitudes in the Northern Hemisphere in winter (the hiatus). The decrease in the thermal contrast between Arctic and midlatitudes has been connected to extreme weather events in midlatitudes via, e.g., shifts in the jet stream towards the equator and increases in the probability of high-latitude atmospheric blocking. Here we present an observational attribution study showing the spatial structure of the response to changes in radiative forcing. The results also connect the hiatus with diminished contrast between temperatures over regions in the Arctic and midlatitudes. Recent changes in these regional warming trends are linked to international actions such as the Montreal Protocol, and illustrate how changes in radiative forcing can trigger unexpected responses from the climate system. The lesson for climate policy is that human intervention with the climate is already large enough that even if stabilization was attained, impacts from an adjusting climate are to be expected.


Sign in / Sign up

Export Citation Format

Share Document