scholarly journals Variability in Terrestrial Carbon Sinks over Two Decades. Part III: South America, Africa, and Asia

2005 ◽  
Vol 9 (29) ◽  
pp. 1-15 ◽  
Author(s):  
C. Potter ◽  
S. Klooster ◽  
P. Tan ◽  
M. Steinbach ◽  
V. Kumar ◽  
...  

Abstract Seventeen years (1982–98) of net carbon flux predictions for Southern Hemisphere continents have been analyzed, based on a simulation model using satellite observations of monthly vegetation cover. The NASA Carnegie Ames Stanford Approach (CASA) model was driven by vegetation-cover properties derived from the Advanced Very High Resolution Radiometer and radiative transfer algorithms that were developed for the Moderate Resolution Imaging Spectroradiometer (MODIS). The terrestrial ecosystem flux for atmospheric CO2 for the Amazon region of South America has been predicted between a biosphere source of –0.17 Pg C per year (in 1983) and a biosphere sink of +0.64 Pg C per year (in 1989). The areas of highest variability in net ecosystem production (NEP) fluxes across all of South America were detected in the south-central rain forest areas of the Amazon basin and in southeastern Brazil. Similar levels of variability were recorded across central forested portions of Africa and in the southern horn of East Africa, throughout Indonesia, and in eastern Australia. It is hypothesized that periodic droughts and wildfires associated with four major El Niño events during the 1980s and 1990s have held the net ecosystem carbon sink for atmospheric CO2 in an oscillating pattern of a 4–6-yr cycle, despite observations of increasing net plant carbon fixation over the entire 17-yr time period.

The Auk ◽  
2001 ◽  
Vol 118 (4) ◽  
pp. 838-848 ◽  
Author(s):  
J. V. Remsen Jr. ◽  
F. Moore

Abstract Most recent references describe the winter range of the Veery (Catharus fuscescens) as including an extensive area from northern Colombia, Venezuela, and Guyana south to south-central Brazil. Analysis of seasonal distribution of specimen records in South America, however, shows that 91 of 105 specimens were taken during spring and fall, not winter; the remaining 14, taken from 2 December to 20 February, are all from three small areas at the periphery or south of the Amazon basin. Thus, the true winter range is almost completely south and east of the area generally described. The seasonal distribution of specimen records is consistent with observational data from South America and banding data from the Neotropics. Although those data must be treated cautiously, it appears that the true winter range of the Veery is in south-central and southeastern Brazil, an area where habitat destruction threatens many natural habitats, rather than in the relatively undisturbed areas of western Amazonia. Widespread erroneous portrayal of the winter range of the Veery seems to have been caused largely by the assumption that the species winters in South America wherever it has been recorded and by overlooking a previously published analysis of its winter distribution.


2014 ◽  
Vol 14 (6) ◽  
pp. 7683-7709
Author(s):  
F. Jiang ◽  
H. M. Wang ◽  
J. M. Chen ◽  
T. Machida ◽  
L. X. Zhou ◽  
...  

Abstract. Terrestrial CO2 flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002–2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the BEPS model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced. CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements have improved the inversion results.


2014 ◽  
Vol 14 (18) ◽  
pp. 10133-10144 ◽  
Author(s):  
F. Jiang ◽  
H. M. Wang ◽  
J. M. Chen ◽  
T. Machida ◽  
L. X. Zhou ◽  
...  

Abstract. Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002–2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2–12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.


2019 ◽  
Vol 19 (18) ◽  
pp. 12067-12082 ◽  
Author(s):  
Hengmao Wang ◽  
Fei Jiang ◽  
Jun Wang ◽  
Weimin Ju ◽  
Jing M. Chen

Abstract. In this study, both the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals produced by the NASA Atmospheric CO2 Observations from Space (ACOS) project (version b7.3) are assimilated within the GEOS-Chem 4D-Var assimilation framework to constrain the terrestrial ecosystem carbon flux during 1 October 2014 to 31 December 2015. One inversion for the comparison, using in situ CO2 observations, and another inversion as a benchmark for the simulated atmospheric CO2 distributions of the real inversions, using global atmospheric CO2 trends and referred to as the poor-man inversion, are also conducted. The estimated global and regional carbon fluxes for 2015 are shown and discussed. CO2 observations from surface flask sites and XCO2 retrievals from Total Carbon Column Observing Network (TCCON) sites are used to evaluate the simulated concentrations with the posterior carbon fluxes. Globally, the terrestrial ecosystem carbon sink (excluding biomass burning emissions) estimated from GOSAT data is stronger than that inferred from OCO-2 data, weaker than the in situ inversion and matches the poor-man inversion the best. Regionally, in most regions, the land sinks inferred from GOSAT data are also stronger than those from OCO-2 data, and in North America, Asia and Europe, the carbon sinks inferred from GOSAT inversion are comparable to those from in situ inversion. For the latitudinal distribution of land sinks, the satellite-based inversions suggest a smaller boreal and tropical sink but larger temperate sinks in both the Northern and Southern Hemisphere than the in situ inversion. However, OCO-2 and GOSAT generally do not agree on which continent contains the smaller or larger sinks. Evaluations using flask and TCCON observations and the comparisons with in situ and poor-man inversions suggest that only GOSAT and the in situ inversions perform better than a poor-man solution. GOSAT data can effectively improve the carbon flux estimates in the Northern Hemisphere, while OCO-2 data, with the specific version used in this study, show only slight improvement. The differences of inferred land fluxes between GOSAT and OCO-2 inversions in different regions are mainly related to the spatial coverage, the data amount and the biases of these two satellite XCO2 retrievals.


2022 ◽  
Author(s):  
Liyan Song ◽  
Yangqing Wang ◽  
Rui Zhang ◽  
Shu Yang

Abstract Landfills is a unique “terrestrial ecosystem” and serves as a significant carbon sink. Microorganism convert biodegradable substances in municipal solid waste (MSW) to CH4, CO2 and microbial biomass, consisting of the carbon cycling in landfills. Meanwhile, microbial mediated N and S cycles affect carbon cycling. How microbial community structure and function respond to C, N, and S cycling during solid waste decomposition, however are not well characterized. Here we show the response of bacterial and archaeal community structure and functions to C, N, and S cycling during solid waste decomposition in a long-term (265 days) operation laboratory-scale bioreactor through 16S rRNA based pyrosequencing and metagenomics analysis. Bacterial and archaeal community composition varied during solid waste decomposition. Aerobic respiration was the main pathway for CO2 emission, while anaerobic C fixation was the main pathway in carbon fixation. Methanogenesis and denitrification increased during solid waste decomposition, suggesting increasing CH4 and N2O emission. In contract, fermentation decreased along solid waste decomposition. Interestingly, Clostridiales were abundant and showed potential for several pathways in C, N, and S cycling. Archaea were involved in many pathways of C and N cycles. There is a shift between bacteria and archaea involvement in N2 fixation along solid waste decomposition that bacteria Clostridiales and Bacteroidales were initial dominant and then Methanosarcinales increased and became dominant in methanogenic phase. These results provide extensive microbial mediation of C, N, and S cycling profiles during solid waste decomposition.


Author(s):  
Mariela C. Castro ◽  
Murilo J. Dahur ◽  
Gabriel S. Ferreira

AbstractDidelphidae is the largest New World radiation of marsupials, and is mostly represented by arboreal, small- to medium-sized taxa that inhabit tropical and/or subtropical forests. The group originated and remained isolated in South America for millions of years, until the formation of the Isthmus of Panama. In this study, we present the first reconstruction of the biogeographic history of Didelphidae including all major clades, based on parametric models and stratified analyses over time. We also compiled all the pre-Quaternary fossil records of the group, and contrasted these data to our biogeographic inferences, as well as to major environmental events that occurred in the South American Cenozoic. Our results indicate the relevance of Amazonia in the early diversification of Didelphidae, including the divergence of the major clades traditionally ranked as subfamilies and tribes. Cladogeneses in other areas started in the late Miocene, an interval of intense shifts, especially in the northern portion of Andes and Amazon Basin. Occupation of other areas continued through the Pliocene, but few were only colonized in Quaternary times. The comparison between the biogeographic inference and the fossil records highlights some further steps towards better understanding the spatiotemporal evolution of the clade. Finally, our results stress that the early history of didelphids is obscured by the lack of Paleogene fossils, which are still to be unearthed from low-latitude deposits of South America.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


2021 ◽  
Author(s):  
Markus Deppner ◽  
Bedartha Goswami

<p>The impact of the El Niño Southern Oscillation (ENSO) on rivers are well known, but most existing studies involving streamflow data are severely limited by data coverage. Time series of gauging stations fade in and out over time, which makes hydrological large scale and long time analysis or studies of rarely occurring extreme events challenging. Here, we use a machine learning approach to infer missing streamflow data based on temporal correlations of stations with missing values to others with data. By using 346 stations, from the “Global Streamflow Indices and Metadata archive” (GSIM), that initially cover the 40 year timespan in conjunction with Gaussian processes we were able to extend our data by estimating missing data for an additional 646 stations, allowing us to include a total of 992 stations. We then investigate the impact of the 6 strongest El Niño (EN) events on rivers in South America between 1960 and 2000. Our analysis shows a strong correlation between ENSO events and extreme river dynamics in the southeast of Brazil, Carribean South America and parts of the Amazon basin. Furthermore we see a peak in the number of stations showing maximum river discharge all over Brazil during the EN of 1982/83 which has been linked to severe floods in the east of Brazil, parts of Uruguay and Paraguay. However EN events in other years with similar intensity did not evoke floods with such magnitude and therefore the additional drivers of the 1982/83  floods need further investigation. By using machine learning methods to infer data for gauging stations with missing data we were able to extend our data by almost three-fold, revealing a possible heavier and spatially larger impact of the 1982/83 EN on South America's hydrology than indicated in literature.</p>


2016 ◽  
Vol 7 (4) ◽  
pp. 953-968 ◽  
Author(s):  
Fanny Langerwisch ◽  
Ariane Walz ◽  
Anja Rammig ◽  
Britta Tietjen ◽  
Kirsten Thonicke ◽  
...  

Abstract. Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60 % due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40 % under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean.


2007 ◽  
Vol 5 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Cristina M. Bührnheim ◽  
Luiz R. Malabarba

Odontostilbe pulchra, previously considered species inquirenda in Cheirodontinae and doubtfully assigned from the río Orinoco basin, is redescribed with the rediscovery of two syntypes. Originally described to the Island of Trinidad, O. pulchra is widespread in Venezuela, the río Orinoco basin, in smaller coastal drainages of northern South America, in the Lake Valencia system, and río Essequibo basin. A punctual occurrence in the upper rio Negro, near southernmost headwaters of the río Orinoco, extends its distribution to the Amazon basin. Additionally, two new species of Odontostilbe from the río Orinoco basin are described.


Sign in / Sign up

Export Citation Format

Share Document