Aerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part II: Application to Test Cases and Validation

2004 ◽  
Vol 43 (12) ◽  
pp. 1818-1833 ◽  
Author(s):  
Maria João Costa ◽  
Vincenzo Levizzani ◽  
Ana Maria Silva

Abstract A method based on the synergistic use of low earth orbit and geostationary earth orbit satellite data for aerosol-type characterization and aerosol optical thickness (AOT: τa) retrieval and monitoring over the ocean is presented in Part I of this paper. The method is now applied to a strong dust outbreak over the Atlantic Ocean in June 1997 and to two other relevant transport events of biomass burning and desert dust aerosol that occurred in 2000 over the Atlantic and Indian Oceans, respectively. The retrievals of the aerosol optical properties are checked against retrievals from sun and sky radiance measurements from the ground-based Aerosol Robotic Network (AERONET). The single-scattering albedo values obtained from AERONET are always within the error bars presented for Global Ozone Monitoring Experiment (GOME) retrievals, resulting in differences lower than 0.041. The retrieved AOT values are compared with the independent space–time-collocated measurements from the AERONET, as well as to the satellite aerosol official products of the Polarization and Directionality of the Earth Reflectances (POLDER) and the Moderate Resolution Imaging Spectroradiometer (MODIS). A first estimate of the AOT accuracy derived from comparisons with AERONET data leads to ±0.02 ± 0.22τa when all AOT values are retained or to ±0.02 ± 0.16τa for aerosol transport events (AOT > 0.4). The upwelling flux at the top of the atmosphere (TOA) was computed with radiative transfer calculations and used to estimate the TOA direct shortwave aerosol radiative forcing; a comparison with space–time-collocated measurements from the Clouds and the Earth's Radiant Energy System (CERES) TOA flux product was also done. It was found that more than 90% of the values differ from CERES fluxes by less than ±15%.

2021 ◽  
Vol 14 (1) ◽  
pp. 179
Author(s):  
Kesar Chand ◽  
Jagdish Chandra Kuniyal ◽  
Shruti Kanga ◽  
Raj Paul Guleria ◽  
Gowhar Meraj ◽  
...  

The extensive work on the increasing burden of aerosols and resultant climate implications shows a matter of great concern. In this study, we investigate the aerosol optical depth (AOD) variations in the Indian Himalayan Region (IHR) between its plains and alpine regions and the corresponding consequences on the energy balance on the Himalayan glaciers. For this purpose, AOD data from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD-L3), Aerosol Robotic Network (AERONET), India, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) were analyzed. Aerosol radiative forcing (ARF) was assessed using the atmospheric radiation transfer model (RTM) integrated into AERONET inversion code based on the Discrete Ordinate Radiative Transfer (DISORT) module. Further, air mass trajectory over the entire IHR was analyzed using a hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We estimated that between 2001 and 2015, the monthly average ARF at the surface (ARFSFC), top of the atmosphere (ARFTOA), and atmosphere (ARFATM) were −89.6 ± 18.6 Wm−2, −25.2 ± 6.8 Wm−2, and +64.4 ± 16.5 Wm−2, respectively. We observed that during dust aerosol transport days, the ARFSFC and TOA changed by −112.2 and −40.7 Wm−2, respectively, compared with low aerosol loading days, thereby accounting for the decrease in the solar radiation by 207% reaching the surface. This substantial decrease in the solar radiation reaching the Earth’s surface increases the heating rate in the atmosphere by 3.1-fold, thereby acting as an additional forcing factor for accelerated melting of the snow and glacier resources of the IHR.


2021 ◽  
Author(s):  
Archana Devi ◽  
Sreedharan Krishnakumari Satheesh

Abstract. Single Scattering Albedo (SSA) is a leading contributor to the uncertainty in aerosol radiative impact assessments. Therefore accurate information on aerosol absorption is required on a global scale. In this study, we have applied a multi-satellite algorithm to retrieve SSA using the concept of ‘critical optical depth.’ Global maps of SSA were generated following this approach using spatially and temporally collocated data from Clouds and the Earth’s Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on board Terra and Aqua satellites. The method has been validated using the data from aircraft-based measurements of various field campaigns. The retrieval uncertainty is ±0.03 and depends on both the surface albedo and aerosol absorption. Global mean SSA estimated over land and ocean is 0.93 and 0.97, respectively. Seasonal and spatial distribution of SSA over various regions are also presented. The global maps of SSA, thus derived with improved accuracy, provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.


2019 ◽  
Vol 99 ◽  
pp. 04006
Author(s):  
Khan Alam ◽  
Maqbool Ahmad

Dust storms deteriorated air quality over the Gulf Region, Iraq, Iran, and Pakistan during the last decade. The purpose of this study is to investigate the changes in aerosol optical and radiative properties during a dust episode over the various locations in the Middle East and Southwest Asia using data from the MODerate resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) during March, 2012. Maximum aerosol optical depth (AOD) values were found to be 2.18, 1.30, 4.33 and 1.80 over Lahore, Kanpur, Kaust, and Mezaira, respectively. The Volume Size Distributions, Single Scattering Albedo, Refractive Index, and Asymmetry parameter indicated that coarse mode aerosols were predominant relative to fine mode aerosols during the dust event. The average shortwave aerosol radiative forcing (ARF) values at the earth’s surface were found to be -96±45 W m-2, -86±22 W m-2, -77±51 W m-2, and -75±40 W m-2, over Lahore, Kanpur, Kaust and Mezaira, respectively. Likewise, the averaged ARF values over Lahore, Kanpur, Kaust and Mezaira at the top of the atmosphere (TOA) were found to be -45±25 W m-2, -27±9 W m-2, -41±29 W m-2, and -75±40 W m-2, respectively. The large differences between surface and TOA forcing produced significant heating within the atmosphere.


2019 ◽  
Vol 11 (24) ◽  
pp. 2919
Author(s):  
Chuan Zhan ◽  
Richard P. Allan ◽  
Shunlin Liang ◽  
Dongdong Wang ◽  
Zhen Song

Five satellite top-of-atmosphere (TOA) albedo products over land were evaluated in this study including global products from the Advanced Very High Resolution Radiometer (AVHRR) (TAL-AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS) (TAL-MODIS), and Clouds and the Earth’s Radiant Energy System (CERES); one regional product from the Climate Monitoring Satellite Application Facility (CM SAF); and one harmonized product termed Diagnosing Earth’s Energy Pathways in the Climate system (DEEP-C). Results showed that overall, there is good consistency among these five products, particularly after the year 2000. The differences among these products in the high-latitude regions were relatively larger. The percentage differences among TAL-AVHRR, TAL-MODIS, and CERES were generally less than 20%, while the differences between TAL-AVHRR and DEEP-C before 2000 were much larger. Except for the obvious decrease in the differences after 2000, the differences did not show significant changes over time, but varied among different regions. The differences between TAL-AVHRR and the other products were relatively large in the high-latitude regions of North America, Asia, and the Maritime Continent, while the differences between DEEP-C and CM SAF in Europe and Africa were smaller. Interannual variability was consistent between products after 2000, before which the differences among the three products were much larger.


2005 ◽  
Vol 22 (4) ◽  
pp. 338-351 ◽  
Author(s):  
Norman G. Loeb ◽  
Seiji Kato ◽  
Konstantin Loukachine ◽  
Natividad Manalo-Smith

Abstract The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the understanding and modeling of the interaction between clouds, aerosols, and radiation at the top of the atmosphere, surface, and within the atmosphere. This paper describes the approach used to estimate top-of-atmosphere (TOA) radiative fluxes from instantaneous CERES radiance measurements on the Terra satellite. A key component involves the development of empirical angular distribution models (ADMs) that account for the angular dependence of the earth’s radiation field at the TOA. The CERES Terra ADMs are developed using 24 months of CERES radiances, coincident cloud and aerosol retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from the Global Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) V4.0.3 product. Scene information for the ADMs is from MODIS retrievals and GEOS DAS V4.0.3 properties over the ocean, land, desert, and snow for both clear and cloudy conditions. Because the CERES Terra ADMs are global, and far more CERES data are available on Terra than were available from CERES on the Tropical Rainfall Measuring Mission (TRMM), the methodology used to define CERES Terra ADMs is different in many respects from that used to develop CERES TRMM ADMs, particularly over snow/sea ice, under cloudy conditions, and for clear scenes over land and desert.


2018 ◽  
Author(s):  
Kruthika Eswaran ◽  
Sreedharan Krishnakumari Satheesh ◽  
Jayaraman Srinivasan

Abstract. Single scattering albedo (SSA) represents a unique identification of aerosol type and aerosol radiative forcing. However, SSA retrievals are highly uncertain due cloud contamination and aerosol composition. Recent improvement in the SSA retrieval algorithm has combined the superior cloud masking technique of Moderate Resolution Imaging Spectroradiometer (MODIS) and the better sensitivity of Ozone Monitoring Instrument (OMI) to aerosol absorption. The combined OMI-MODIS algorithm has been validated over a small spatial and temporal scale only. The present study validates the algorithm over global oceans for the period 2008–2012. The geographical heterogeneity in the aerosol type and concentration over the Atlantic Ocean, the Arabian Sea and the Bay of Bengal was useful to delineate the effect of aerosol type on the retrieval algorithm. We also noted that OMI overestimates SSA when absorbing aerosols were present closer to the surface. We attribute this overestimation to data discontinuity in the aerosol height climatology derived from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. OMI uses pre-defined aerosol heights over regions where CALIPSO climatology is not present leading to overestimation of SSA. The importance of aerosol height was also studied using the Santa Barbara DISORT radiative transfer (SBDART) model. The results from the joint retrieval were validated with ground-based measurements and it was seen that OMI-MODIS SSA retrievals were better constrained than OMI only retrieval.


2013 ◽  
Vol 30 (3) ◽  
pp. 557-568 ◽  
Author(s):  
Alexander Radkevich ◽  
Konstantin Khlopenkov ◽  
David Rutan ◽  
Seiji Kato

Abstract Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm’s goal is to enhance the identification of snow and ice within the Clouds and the Earth’s Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.


2014 ◽  
Vol 14 (19) ◽  
pp. 10601-10618 ◽  
Author(s):  
S. K. Ebmeier ◽  
A. M. Sayer ◽  
R. G. Grainger ◽  
T. A. Mather ◽  
E. Carboni

Abstract. The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The time-averaged indirect aerosol effects within 200 km downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002–2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002–2008) data. Retrievals of aerosol and cloud properties at Kīlauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (la Réunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes – including those from passive degassing, Strombolian activity and minor explosions – lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2–8 μm at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Wm−2 at distances of 150–400 km from the volcano, with much greater local (< 80 km) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to those in the pre-industrial marine atmosphere.


2013 ◽  
Vol 30 (6) ◽  
pp. 1072-1090 ◽  
Author(s):  
David R. Doelling ◽  
Norman G. Loeb ◽  
Dennis F. Keyes ◽  
Michele L. Nordeen ◽  
Daniel Morstad ◽  
...  

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) instruments on board the Terra and Aqua spacecraft continue to provide an unprecedented global climate record of the earth’s top-of-atmosphere (TOA) energy budget since March 2000. A critical step in determining accurate daily averaged flux involves estimating the flux between CERES Terra or Aqua overpass times. CERES employs the CERES-only (CO) and the CERES geostationary (CG) temporal interpolation methods. The CO method assumes that the cloud properties at the time of the CERES observation remain constant and that it only accounts for changes in albedo with solar zenith angle and diurnal land heating, by assuming a shape for unresolved changes in the diurnal cycle. The CG method enhances the CERES data by explicitly accounting for changes in cloud and radiation between CERES observation times using 3-hourly imager data from five geostationary (GEO) satellites. To maintain calibration traceability, GEO radiances are calibrated against Moderate Resolution Imaging Spectroradiometer (MODIS) and the derived GEO fluxes are normalized to the CERES measurements. While the regional (1° latitude × 1° longitude) monthly-mean difference between the CG and CO methods can exceed 25 W m−2 over marine stratus and land convection, these regional biases nearly cancel in the global mean. The regional monthly CG shortwave (SW) and longwave (LW) flux uncertainty is reduced by 20%, whereas the daily uncertainty is reduced by 50% and 20%, respectively, over the CO method, based on comparisons with 15-min Geostationary Earth Radiation Budget (GERB) data.


2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Joseph A. Adesina ◽  
Stuart J. Piketh ◽  
Paola Formenti ◽  
Gillian Maggs-Kölling ◽  
Brent N. Holben ◽  
...  

Atmospheric aerosols contribute significantly to the uncertainty in radiative forcing effects that influence the climate and pose a significant health risk to humans.   The climatic implications of aerosols are dependent on many variables, including aerosol size, shape, chemical composition, and position in the atmospheric column. The radiative impact of aerosols transported over the west coast of southern Africa has been found, in particular, to be complicated by the aforementioned aerosol properties.  This study investigated the columnar optical properties of aerosols over Gobabeb, Namibia (23.56oS, 15.04oE, 400 m asl) using sunphotometer data between December 2014 and November 2015. Aerosol mean optical depth AOD500 had its maximum and minimum values in 2015 August (0.37±0.30) and June (0.06±0.02), respectively. The Angström parameter was mostly above unity during the study period and indicated the prevalence of fine particles for the most part of the year with maximum and minimum values observed in August 2015 (1.44±0.19) and December 2014 (0.57±0.19), respectively. The columnar water vapor was highest in January (2.62±0.79) and lowest in June (0.76±0.27). The volume size distribution showed the fine particles having a mean radius of about 0.16 μm and the coarse mode had variation in sizes with a radius ranging between 3 μm and 7 μm. The single scattering albedo at visible wavelengths ranged between 0.87 and 0.88. The phase function was high at small angles but minimum at about 140o in all seasons. The radiative forcing showed a heating effect in all seasons with maximum and minimum in winter (9.41 Wm-2) and autumn (3.64 Wm-2), respectively. Intercomparison of the sunphotometer data with the Moderate Resolution Imaging Spectroradiometer (MODIS) showed that the satellite sensor overestimates the aerosol loading compared to the ground-based sunphotometer measurements. Both sets of observations were better correlated during the spring and winter seasons than for summer and autumn.


Sign in / Sign up

Export Citation Format

Share Document