Implementation of an Urban Parameterization Scheme into the Regional Climate Model COSMO-CLM

2013 ◽  
Vol 52 (10) ◽  
pp. 2296-2311 ◽  
Author(s):  
Kristina Trusilova ◽  
Barbara Früh ◽  
Susanne Brienen ◽  
Andreas Walter ◽  
Valéry Masson ◽  
...  

AbstractAs the nonhydrostatic regional model of the Consortium for Small-Scale Modelling in Climate Mode (COSMO-CLM) is increasingly employed for studying the effects of urbanization on the environment, the authors extend its surface-layer parameterization by the Town Energy Budget (TEB) parameterization using the “tile approach” for a single urban class. The new implementation COSMO-CLM+TEB is used for a 1-yr reanalysis-driven simulation over Europe at a spatial resolution of 0.11° (~12 km) and over the area of Berlin at a spatial resolution of 0.025° (~2.8 km) for evaluating the new coupled model. The results on the coarse spatial resolution of 0.11° show that the standard and the new models provide 2-m temperature and daily precipitation fields that differ only slightly by from −0.1 to +0.2 K per season and ±0.1 mm day−1, respectively, with very similar statistical distributions. This indicates only a negligibly small effect of the urban parameterization on the model's climatology. Therefore, it is suggested that an urban parameterization may be omitted in model simulations on this scale. On the spatial resolution of 0.025° the model COSMO-CLM+TEB is able to better represent the magnitude of the urban heat island in Berlin than the standard model COSMO-CLM. This finding shows the importance of using the parameterization for urban land in the model simulations on fine spatial scales. It is also suggested that models could benefit from resolving multiple urban land use classes to better simulate the spatial variability of urban temperatures for large metropolitan areas on spatial scales below ~3 km.

2015 ◽  
Vol 16 (2) ◽  
pp. 534-547 ◽  
Author(s):  
Jonas Olsson ◽  
Peter Berg ◽  
Akira Kawamura

Abstract Many hydrological hazards are closely connected to local precipitation (extremes), especially in small and urban catchments. The use of regional climate model (RCM) data for small-scale hydrological climate change impact assessment has long been nearly unfeasible because of the low spatial resolution. The RCM resolution is, however, rapidly increasing, approaching the size of small catchments and thus potentially increasing the applicability of RCM data for this purpose. The objective of this study is to explore to what degree subhourly temporal precipitation statistics in an RCM converge to observed point statistics when gradually increasing the resolution from 50 to 6 km. This study uses precipitation simulated by RCA3 at seven locations in southern Sweden during 1995–2008. A positive impact of higher resolution was most clearly manifested in 10-yr intensity–duration–frequency (IDF) curves. At 50 km the intensities are underestimated by 50%–90%, but at 6 km they are nearly unbiased, when averaged over all locations and durations. Thus, at 6 km, RCA3 apparently generates low-frequency subdaily extremes that resemble the values found in point observations. Also, the reproduction of short-term variability and less extreme maxima were overall improved with increasing resolution. For monthly totals, a slightly increased overestimation with increasing resolution was found. The bias in terms of wet fraction and wet spell characteristics was overall not strongly dependent on resolution. These metrics are, however, influenced by the cutoff threshold used to separate between wet and dry time steps as well as the wet spell definition.


2011 ◽  
Vol 92 (9) ◽  
pp. 1181-1192 ◽  
Author(s):  
Frauke Feser ◽  
Burkhardt Rockel ◽  
Hans von Storch ◽  
Jörg Winterfeldt ◽  
Matthias Zahn

An important challenge in current climate modeling is to realistically describe small-scale weather statistics, such as topographic precipitation and coastal wind patterns, or regional phenomena like polar lows. Global climate models simulate atmospheric processes with increasingly higher resolutions, but still regional climate models have a lot of advantages. They consume less computation time because of their limited simulation area and thereby allow for higher resolution both in time and space as well as for longer integration times. Regional climate models can be used for dynamical down-scaling purposes because their output data can be processed to produce higher resolved atmospheric fields, allowing the representation of small-scale processes and a more detailed description of physiographic details (such as mountain ranges, coastal zones, and details of soil properties). However, does higher resolution add value when compared to global model results? Most studies implicitly assume that dynamical downscaling leads to output fields that are superior to the driving global data, but little work has been carried out to substantiate these expectations. Here a series of articles is reviewed that evaluate the benefit of dynamical downscaling by explicitly comparing results of global and regional climate model data to the observations. These studies show that the regional climate model generally performs better for the medium spatial scales, but not always for the larger spatial scales. Regional models can add value, but only for certain variables and locations—particularly those influenced by regional specifics, such as coasts, or mesoscale dynamics, such as polar lows. Therefore, the decision of whether a regional climate model simulation is required depends crucially on the scientific question being addressed.


2011 ◽  
Vol 68 (9) ◽  
pp. 2156-2168 ◽  
Author(s):  
B. H. Kahn ◽  
J. Teixeira ◽  
E. J. Fetzer ◽  
A. Gettelman ◽  
S. M. Hristova-Veleva ◽  
...  

Abstract Observations of the scale dependence of height-resolved temperature T and water vapor q variability are valuable for improved subgrid-scale climate model parameterizations and model evaluation. Variance spectral benchmarks for T and q obtained from the Atmospheric Infrared Sounder (AIRS) are compared to those generated by state-of-the-art numerical weather prediction “analyses” and “free-running” climate model simulations with spatial resolution comparable to AIRS. The T and q spectra from both types of models are generally too steep, with small-scale variance up to several factors smaller than AIRS. However, the two model analyses more closely resemble AIRS than the two free-running model simulations. Scaling exponents obtained for AIRS column water vapor (CWV) and height-resolved layers of q are also compared to the superparameterized Community Atmospheric Model (SP-CAM), highlighting large differences in the magnitude of CWV variance and the relative flatness of height-resolved q scaling in SP-CAM. Height-resolved q spectra obtained from aircraft observations during the Variability of the American Monsoon Systems Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) demonstrate changes in scaling exponents that depend on the observations’ proximity to the base of the subsidence inversion with scale breaks that occur at approximately the dominant cloud scale (~10–30 km). This suggests that finer spatial resolution requirements must be considered for future satellite observations of T and q than those currently planned for infrared and microwave satellite sounders.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1155
Author(s):  
Yoav Levi ◽  
Yossi Mann

Fortunately, extreme temperatures reaching 50 °C are not common on our planet. The capability of the consortium for small-scale modelling regional climate model (COSMO-CLM), with 0.44° resolution, to project future trends of an extremely hot environment with direct model output (DMO) is questioned. The temperature distribution of COSMO-CLM output driven by reanalysis and RCP4.5 scenario in southern Iraq was remarkably good, with a slight temperature overestimation, compared to the overlapping observations from Basra airport. An attempt to enhance the DMO with a statistical downscaling method did not improve the results. The COSMO-CLM projection indicates that a very sharp increase in the number of consecutive hours and days with the temperature reaching 50 °C or higher will occur. During 1951–1980, consecutive hours and days reaching 50 °C were rare events. By the end of the century, the projected climate in southern Iraq contains up to 13 consecutive hours and 21 consecutive days reaching 50 °C or higher. As the average projected temperature will increase by ~2 °C compared to the recent climate, new records may be expected. However, the major climate change feature is the increase in consecutive hours and days of very high temperatures. These findings require adaptation measures to support future habitation of the region.


2016 ◽  
Vol 66 (2) ◽  
pp. 108
Author(s):  
Alejandro Di Luca ◽  
Jason P. Evans ◽  
Acacia S. Pepler ◽  
Lisa V. Alexander ◽  
Daniel Argüeso

Due to their large influence on both severe weather and water security along the east coast of Australia, it is increasingly important to understand how East Coast Lows (ECLs) may change over coming decades. Changes in ECLs may occur for a number of reasons including changes in the general atmospheric circulation (e.g. poleward shift of storm tracks) and/or changes in local conditions (e.g. changes in sea surface temperatures). Numerical climate models are the best available tool for studying these changes however, in order to assess future projections, climate model simulations need to be evaluated on how well they represent the historical climatology of ECLs. In this paper, we evaluate the performance of a 15-member ensemble of regional climate model (RCM) simulations to reproduce the climatology of cyclones obtained using three high-resolution reanalysis datasets (ERA-Interim, NASA-MERRA and JRA55). The performance of the RCM ensemble is also compared to results obtained from the global datasets that are used to drive the RCM ensemble (four general circulation model simulations and a low resolution reanalysis), to identify whether they offer additional value beyond the driving data. An existing cyclone detection and tracking algorithm is applied to derive a number of ECL characteristics and assess results at a variety of spatial scales. The RCM ensemble offers substantial improvement on the coarse-resolution driving data for most ECL characteristics, with results typically falling within the range of observational uncertainty, instilling confidence for studies of future projections. The study clearly highlights the need to use an ensemble of simulations to obtain reliable projections and a range of possible future changes.


2021 ◽  
Author(s):  
Mingyue Zhang ◽  
Eva Hartmann ◽  
Elena Xoplaki ◽  
Sebastian Wagner

<p>The interaction between climate variability, extreme events and societies in the Eastern Mediterranean and the Middle East (EMME) and the Nile river basin is of particular interest in the last 2000 years. Major civilizations and complex pre-modern societies have written the greatest and multifaceted history of the area. However, the influence of climate on the societies is examined only from the proxy records perspective, without the detail of the processes that offer regional climate model simulations. The present and future climate and climate variability of this region are currently studied in the frame of the MENA CORDEX program with different global and regional climate models. For the past climate, exist only global climate or earth system model simulations with a coarse spatial resolution with a minimum of 100 km horizontal resolution. We aim at improving our understanding of past climate in the EMME and the Nile river basin (Nile) at the regional scale and use an adjusted paleoclimate version of the COSMO-CLM. Test simulations have been performed over the study region for the years 2017-2018 to identify the best settings of CCLM with respect to the CORDEX-MENA simulations which are carried out by Bucchignani et al. (2016). Test simulations show the CCLM can correctly simulate large tropical volcanic eruptions, as conditions similar to the Tambora eruption by adapting the stratospheric aerosol optical depth (AOD) mimicking conditions after a Tambora-like volcanic eruption. In agreement with Bucchignani et al. (2016), the albedo and aerosols parameters are found to be most important for the area and may be responsible for larger deviations compared to observational data.  Thus, CCLM climate modelling for the present (1979-2019) and selected paleo-periods (525-575 CE and 1220-1290 CE) with intense volcanic activity will be forced by the MPI-ESM-LR ‘past2k’ simulation with the optimized settings which is identified in the test simulations. Orbital, solar and volcanic forcing, together with vegetation, land-use changes and greenhouse gas changes will be addressed step by step in the CCLM with resolutions of 0.44° and 0.11°.  The present-day simulations show that the temperature and precipitation are well simulated compare to reanalysis and observational data in general. Additional, CCLM correctly captured convection and cloud cover clearly define the model performance in the greater southern areas of the domain that are affected by the tropical convection. Further, the orography and the land-sea interaction seem to significantly influence the local climate and may lead to differences compared to observations, which may also be strongly connected with the specific spatial resolution. For example, the Ethiopian Highlands and the East African Plateau have high elevations and have a large impact on the regional climate.</p><p> <strong>Reference</strong></p><p>Bucchignani, E., Cattaneo, L., Panitz, HJ. et al. Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain. Meteorol Atmos Phys <strong>128, </strong>73–95 (2016). https://doi.org/10.1007/s00703-015-0403-3</p>


2006 ◽  
Vol 134 (3) ◽  
pp. 854-873 ◽  
Author(s):  
Soline Bielli ◽  
René Laprise

Abstract The purpose of this work is to study the added value of a regional climate model with respect to the global analyses used to drive the regional simulation, with a special emphasis on the nonlinear interactions between different spatial scales, focusing on the moisture flux divergence. The atmospheric water budget is used to apply the spatial-scale decomposition approach, as it is a key factor in the energetics of the climate. A Fourier analysis is performed individually for each field on pressure levels. Each field involved in the computation of moisture flux divergence is separated into three components that represent selected scale bands, using the discrete cosine transform. The divergence of the moisture flux is computed from the filtered fields. Instantaneous and monthly mean fields from a simulation performed with the Canadian Regional Climate Model are decomposed and allowed to separate the added value of the model to the total fields. Results show that the added value resides in the nonlinear interactions between large (greater than 1000 km) and small (smaller than 600 km) scales. The main small-scale forcing of the wind is topographic, whereas the humidity tends to show more small scales over the ocean. The time-mean divergence of moisture flux is also decomposed into contributions from stationary eddies and transient eddies. Both stationary and transient eddies are decomposed into different spatial scales and show very different patterns. The time-mean divergence due to transient eddies is dominated by large-scale (synoptic scale) features with little small scales. The divergence due to stationary eddies is a combination of small- and large-scale terms, and the main small-scale contribution occurs over the topography. The same decomposition has been applied to the NCEP–NCAR reanalyses used to drive the regional simulation; the results show that the model best reproduces the time-fluctuation component of the moisture flux divergence, with a correlation between the model simulation and the NCEP–NCAR reanalyses above 0.90.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


Sign in / Sign up

Export Citation Format

Share Document