scholarly journals Will Future Climate Favor More Erratic Wildfires in the Western United States?

2013 ◽  
Vol 52 (11) ◽  
pp. 2410-2417 ◽  
Author(s):  
Lifeng Luo ◽  
Ying Tang ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Warren E. Heilman

AbstractWildfires that occurred over the western United States during August 2012 were fewer in number but larger in size when compared with all other Augusts in the twenty-first century. This unique characteristic, along with the tremendous property damage and potential loss of life that occur with large wildfires with erratic behavior, raised the question of whether future climate will favor rapid wildfire growth so that similar wildfire activity may become more frequent as climate changes. This study addresses this question by examining differences in the climatological distribution of the Haines index (HI) between the current and projected future climate over the western United States. The HI, ranging from 2 to 6, was designed to characterize dry, unstable air in the lower atmosphere that may contribute to erratic or extreme fire behavior. A shift in HI distribution from low values (2 and 3) to higher values (5 and 6) would indicate an increased risk for rapid wildfire growth and spread. Distributions of Haines index are calculated from simulations of current (1971–2000) and future (2041–70) climate using multiple regional climate models in the North American Regional Climate Change Assessment Program. Despite some differences among the projections, the simulations indicate that there may be not only more days but also more consecutive days with HI ≥ 5 during August in the future. This result suggests that future atmospheric environments will be more conducive to erratic wildfires in the mountainous regions of the western United States.

2021 ◽  
Author(s):  
Kelly Mahoney ◽  
James D. Scott ◽  
Michael Alexander ◽  
Rachel McCrary ◽  
Mimi Hughes ◽  
...  

AbstractUnderstanding future precipitation changes is critical for water supply and flood risk applications in the western United States. The North American COordinated Regional Downscaling EXperiment (NA-CORDEX) matrix of global and regional climate models at multiple resolutions (~ 50-km and 25-km grid spacings) is used to evaluate mean monthly precipitation, extreme daily precipitation, and snow water equivalent (SWE) over the western United States, with a sub-regional focus on California. Results indicate significant model spread in mean monthly precipitation in several key water-sensitive areas in both historical and future projections, but suggest model agreement on increasing daily extreme precipitation magnitudes, decreasing seasonal snowpack, and a shortening of the wet season in California in particular. While the beginning and end of the California cool season are projected to dry according to most models, the core of the cool season (December, January, February) shows an overall wetter projected change pattern. Daily cool-season precipitation extremes generally increase for most models, particularly in California in the mid-winter months. Finally, a marked projected decrease in future seasonal SWE is found across all models, accompanied by earlier dates of maximum seasonal SWE, and thus a shortening of the period of snow cover as well. Results are discussed in the context of how the diverse model membership and variable resolutions offered by the NA-CORDEX ensemble can be best leveraged by stakeholders faced with future water planning challenges.


2006 ◽  
Vol 19 (6) ◽  
pp. 873-895 ◽  
Author(s):  
P. B. Duffy ◽  
R. W. Arritt ◽  
J. Coquard ◽  
W. Gutowski ◽  
J. Han ◽  
...  

Abstract In this paper, the authors analyze simulations of present and future climates in the western United States performed with four regional climate models (RCMs) nested within two global ocean–atmosphere climate models. The primary goal here is to assess the range of regional climate responses to increased greenhouse gases in available RCM simulations. The four RCMs used different geographical domains, different increased greenhouse gas scenarios for future-climate simulations, and (in some cases) different lateral boundary conditions. For simulations of the present climate, RCM results are compared to observations and to results of the GCM that provided lateral boundary conditions to the RCM. For future-climate (increased greenhouse gas) simulations, RCM results are compared to each other and to results of the driving GCMs. When results are spatially averaged over the western United States, it is found that the results of each RCM closely follow those of the driving GCM in the same region in both present and future climates. This is true even though the study area is in some cases a small fraction of the RCM domain. Precipitation responses predicted by the RCMs in many regions are not statistically significant compared to interannual variability. Where the predicted precipitation responses are statistically significant, they are positive. The models agree that near-surface temperatures will increase, but do not agree on the spatial pattern of this increase. The four RCMs produce very different estimates of water content of snow in the present climate, and of the change in this water content in response to increased greenhouse gases.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1300
Author(s):  
D. W. Shin ◽  
Steven Cocke ◽  
Guillermo A. Baigorria ◽  
Consuelo C. Romero ◽  
Baek-Min Kim ◽  
...  

Since maize, peanut, and cotton are economically valuable crops in the southeast United States, their yield amount changes in a future climate are attention-grabbing statistics demanded by associated stakeholders and policymakers. The Crop System Modeling—Decision Support System for Agrotechnology Transfer (CSM-DSSAT) models of maize, peanut, and cotton are, respectively, driven by the North American Regional Climate Change Assessment Program (NARCCAP) Phase II regional climate models to estimate current (1971–2000) and future (2041–2070) crop yield amounts. In particular, the future weather/climate data are based on the Special Report on Emission Scenarios (SRES) A2 emissions scenario. The NARCCAP realizations show on average that there will be large temperature increases (~2.7 °C) and minor rainfall decreases (~−0.10 mm/day) with pattern shifts in the southeast United States. With these future climate projections, the overall future crop yield amounts appear to be reduced under rainfed conditions. A better estimate of future crop yield amounts might be achievable by utilizing the so-called weighted ensemble method. It is proposed that the reduced crop yield amounts in the future could be mitigated by altering the currently adopted local planting dates without any irrigation support.


2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 83 ◽  
Author(s):  
Agnidé Emmanuel Lawin ◽  
Marc Niyongendako ◽  
Célestin Manirakiza

This paper assessed the variability and projected trends of solar irradiance and temperature in the East of Burundi. Observed temperature from meteorological stations and the MERRA-2 data set provided by NASA/Goddard Space Flight Center are used over the historical period 1976–2005. In addition, solar irradiance data provided by SoDa database were considered. Furthermore, projection data from eight Regional Climate Models were used over the periods 2026–2045 and 2066–2085. The variability analysis was performed using a standardized index. Projected trends and changes in the future climate were respectively detected through Mann-Kendall and t-tests. The findings over the historical period revealed increase temperature and decrease in solar irradiance over the last decades of the 20th century. At a monthly scale, the variability analysis showed that excesses in solar irradiance coincide with the dry season, which led to the conclusion that it may be a period of high production for solar energy. In the future climate, upward trends in temperature are expected over the two future periods, while no significant trends are forecasted in solar irradiance over the entire studied region. However, slight decreases and significant changes in solar irradiance have been detected over all regions.


2018 ◽  
Vol 57 (8) ◽  
pp. 1883-1906 ◽  
Author(s):  
Tanya L. Spero ◽  
Christopher G. Nolte ◽  
Megan S. Mallard ◽  
Jared H. Bowden

AbstractThe use of nudging in the Weather Research and Forecasting (WRF) Model to constrain regional climate downscaling simulations is gaining in popularity because it can reduce error and improve consistency with the driving data. While some attention has been paid to whether nudging is beneficial for downscaling, very little research has been performed to determine best practices. In fact, many published papers use the default nudging configuration (which was designed for numerical weather prediction), follow practices used by colleagues, or adapt methods developed for other regional climate models. Here, a suite of 45 three-year simulations is conducted with WRF over the continental United States to systematically and comprehensively examine a variety of nudging strategies. The simulations here use a longer test period than did previously published works to better evaluate the robustness of each strategy through all four seasons, through multiple years, and across nine regions of the United States. The analysis focuses on the evaluation of 2-m temperature and precipitation, which are two of the most commonly required downscaled output fields for air quality, health, and ecosystems applications. Several specific recommendations are provided to effectively use nudging in WRF for regional climate applications. In particular, spectral nudging is preferred over analysis nudging. Spectral nudging performs best in WRF when it is used toward wind above the planetary boundary layer (through the stratosphere) and temperature and moisture only within the free troposphere. Furthermore, the nudging toward moisture is very sensitive to the nudging coefficient, and the default nudging coefficient in WRF is too high to be used effectively for moisture.


Sign in / Sign up

Export Citation Format

Share Document