scholarly journals Retrieval of Cloud Properties Using CALIPSO Imaging Infrared Radiometer. Part II: Effective Diameter and Ice Water Path

2013 ◽  
Vol 52 (11) ◽  
pp. 2582-2599 ◽  
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Philippe Dubuisson ◽  
Ping Yang ◽  
Michaël Faivre ◽  
...  

AbstractThis paper describes the version-3 level-2 operational analysis of the Imaging Infrared Radiometer (IIR) data collected in the framework of the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission to retrieve cirrus cloud effective diameter and ice water path in synergy with the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) collocated observations. The analysis uses a multisensor split-window technique relying on the concept of microphysical index applied to the two pairs of channels (12.05, 10.6 μm) and (12.05, 8.65 μm) to retrieve cirrus microphysical properties (effective diameter, ice water path) at 1-km pixel resolution. Retrievals are performed for three crystal families selected from precomputed lookup tables identified as representative of the main relationships between the microphysical indices. The uncertainties in the microphysical indices are detailed and quantified, and the impact on the retrievals is simulated. The possible biases have been assessed through consistency checks that are based on effective emissivity difference. It has been shown that particle effective diameters of single-layered cirrus clouds can be retrieved, for the first time, down to effective emissivities close to 0.05 when accurate measured background radiances can be used and up to 0.95 over ocean and land, as well as over low opaque clouds. The retrieval of the ice water path from the IIR effective optical depth and the effective diameter is discussed. Taking advantage of the cloud boundaries retrieved by CALIOP, an IIR power-law relationship between ice water content and extinction is established for four temperature ranges and shown to be consistent with previous results on average for the chosen dataset.

2015 ◽  
Vol 54 (8) ◽  
pp. 1809-1825 ◽  
Author(s):  
Yaodeng Chen ◽  
Hongli Wang ◽  
Jinzhong Min ◽  
Xiang-Yu Huang ◽  
Patrick Minnis ◽  
...  

AbstractAnalysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.


2012 ◽  
Vol 12 (6) ◽  
pp. 14927-14957
Author(s):  
R. Morales Betancourt ◽  
D. Lee ◽  
L. Oreopoulos ◽  
Y. C. Sud ◽  
D. Barahona ◽  
...  

Abstract. The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T~260 K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted average values of IWP within ±15% of the observations.


2013 ◽  
Vol 6 (5) ◽  
pp. 8187-8233 ◽  
Author(s):  
J. Gong ◽  
D. L. Wu

Abstract. Ice water path (IWP) and cloud top height (ht) are two of the key variables to determine cloud radiative and thermodynamical properties in the climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3 ± 3 and 190.3 GHz radiances of Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the forward models between collocated-and-coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a look-up-table (LUT) of Tcir–IWP relationships as a function of ht and frequency channel. With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg m−2, and agrees well with CloudSat in terms of normalized probability density function (PDF). Compared to the empirical model, current radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir–IWP relationships. Therefore, the empirical LUT method developed here remains as an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.


2021 ◽  
Vol 14 (5) ◽  
pp. 3277-3299
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Nicolas Pascal ◽  
Mark A. Vaughan ◽  
Philippe Dubuisson ◽  
...  

Abstract. Following the release of the version 4 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data products from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a new version 4 (V4) of the CALIPSO Imaging Infrared Radiometer (IIR) Level 2 data products has been developed. The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and water path estimates for ice and liquid clouds. This paper (Part II) shows retrievals over ocean and describes the improvements made with respect to version 3 (V3) as a result of the significant changes implemented in the V4 algorithms, which are presented in a companion paper (Part I). The analysis of the three-channel IIR observations (08.65, 10.6, and 12.05 µm) is informed by the scene classification provided in the V4 CALIOP 5 km cloud layer and aerosol layer products. Thanks to the reduction of inter-channel effective emissivity biases in semi-transparent (ST) clouds when the oceanic background radiance is derived from model computations, the number of unbiased emissivity retrievals is increased by a factor of 3 in V4. In V3, these biases caused inconsistencies between the effective diameters retrieved from the 12/10 (βeff12/10 = τa,12/τa,10) and 12/08 (βeff12/08 = τa,12/τa,08) pairs of channels at emissivities smaller than 0.5. In V4, microphysical retrievals in ST ice clouds are possible in more than 80 % of the pixels down to effective emissivities of 0.05 (or visible optical depth ∼0.1). For the month of January 2008, which was chosen to illustrate the results, median ice De and ice water path (IWP) are, respectively, 38 µm and 3 g m−2 in ST clouds, with random uncertainty estimates of 50 %. The relationship between the V4 IIR 12/10 and 12/08 microphysical indices is in better agreement with the “severely roughened single column” ice habit model than with the “severely roughened eight-element aggregate” model for 80 % of the pixels in the coldest clouds (<210 K) and 60 % in the warmest clouds (>230 K). Retrievals in opaque ice clouds are improved in V4, especially at night and for 12/10 pair of channels, due to corrections of the V3 radiative temperature estimates derived from CALIOP geometric altitudes. Median ice De and IWP are 58 µm and 97 g m−2 at night in opaque clouds, with again random uncertainty estimates of 50 %. Comparisons of ice retrievals with Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua in the tropics show a better agreement of IIR De with MODIS visible–3.7 µm than with MODIS visible–2.1 µm in the coldest ST clouds and the opposite for opaque clouds. In prevailingly supercooled liquid water clouds with centroid altitudes above 4 km, retrieved median De and liquid water path are 13 µm and 3.4 g m−2 in ST clouds, with estimated random uncertainties of 45 % and 35 %, respectively. In opaque liquid clouds, these values are 18 µm and 31 g m−2 at night, with estimated uncertainties of 50 %. IIR De in opaque liquid clouds is smaller than MODIS visible–2.1 µm and visible–3.7 µm by 8 and 3 µm, respectively.


2014 ◽  
Vol 7 (6) ◽  
pp. 1873-1890 ◽  
Author(s):  
J. Gong ◽  
D. L. Wu

Abstract. Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3 ± 3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a look-up table (LUT) of Tcir–IWP relationships as a function of ht and the frequency channel. With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg m−2, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir–IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.


2012 ◽  
Vol 12 (22) ◽  
pp. 10679-10692 ◽  
Author(s):  
R. Morales Betancourt ◽  
D. Lee ◽  
L. Oreopoulos ◽  
Y. C. Sud ◽  
D. Barahona ◽  
...  

Abstract. The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice nucleation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of both parameterizations was assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments were established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to describe the availability of IN for heterogeneous ice nucleation. The results showed large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there were some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to the effective transfer of liquid to ice, so that on average, the clouds were fully glaciated at T 260 K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted average values of IWP within ±15% of the observations.


2020 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Lucie Leonarski ◽  
Laurent C.-Labonnote ◽  
Mathieu Compiègne ◽  
Jérôme Vidot ◽  
Anthony J. Baran ◽  
...  

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2).


2018 ◽  
Vol 31 (21) ◽  
pp. 8705-8718 ◽  
Author(s):  
Bida Jian ◽  
Jiming Li ◽  
Guoyin Wang ◽  
Yongli He ◽  
Ying Han ◽  
...  

Planetary albedo (PA; shortwave broadband albedo) and its long-term variations, which are controlled in a complex way by various atmospheric and surface properties, play a key role in controlling the global and regional energy budget. This study investigates the contributions of different atmospheric and surface properties to the long-term variations of PA based on 13 years (2003–15) of albedo, cloud, and ice coverage datasets from the Clouds and the Earth’s Radiant Energy System (CERES) Single Scanner Footprint edition 4A product, vegetation product from Moderate Resolution Imaging Spectroradiometer (MODIS), and surface albedo product from the Cloud, Albedo, and Radiation dataset, version 2 (CLARA-A2). According to the temporal correlation analysis, statistical results indicate that variations in PA are closely related to the variations of cloud properties (e.g., cloud fraction, ice water path, and liquid water path) and surface parameters (e.g., ice/snow percent coverage and normalized difference vegetation index), but their temporal relationships vary among the different regions. Generally, the stepwise multiple linear regression models can capture the observed PA anomalies for most regions. Based on the contribution calculation, cloud fraction dominates the variability of PA in the mid- and low latitudes while ice/snow percent coverage (or surface albedo) dominates the variability in the mid- and high latitudes. Changes in cloud liquid water path and ice water path are the secondary dominant factor over most regions, whereas change in vegetation cover is the least important factor over land. These results verify the effects of atmospheric and surface factors on planetary albedo changes and thus may be of benefit for improving the parameterization of the PA and determining the climate feedbacks.


2006 ◽  
Vol 19 (13) ◽  
pp. 3180-3196 ◽  
Author(s):  
Walter A. Petersen ◽  
Rong Fu ◽  
Mingxuan Chen ◽  
Richard Blakeslee

Abstract This study focuses on modulation of lightning and convective vertical structure in the southern Amazon as a function of the South American monsoon V index (VI). Four wet seasons (December–March 1998–2001) of Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and Precipitation Radar (PR) data are examined together with two wet seasons (2000–01) of ground-based Brazilian Lightning Detection Network (BLDN) data. These observations are composited by VI phase (northerly or southerly) for a region of the southern Amazon and discussed relative to VI-regime environmental characteristics such as thermodynamic instability and wind shear. Relative comparisons of VI-regime convective properties reveal 1) slightly larger (20%–25%) PR pixel-mean rainfall during periods of northerly VI due to increased stratiform precipitation, 2) a factor of 2 or more increase in lightning flash density and the lightning diurnal cycle amplitude during periods of southerly VI, 3) a factor of 1.5–2 increase in the conditional probability of any PR radar reflectivity pixel exceeding 30 dBZ above the −10°C level during periods of southerly VI, and 4) an associated factor of 2 or more increase in southerly VI pixel-mean ice water path, with the ice water path being highly correlated to trends in lightning activity. During periods of southerly VI, convection occurs in an environment of increased thermodynamic instability, weak southeasterly low-level, and deep upper-tropospheric easterly wind shear. During periods of northerly VI, low-level westerly shear opposes stronger deep tropospheric easterly shear in a relatively moist environment of weaker thermodynamic instability, consistent with the occurrence of more widespread stratiform precipitation. The composite results of this study point to 1) regime differences in convective forcing that alter the prevalence of ice processes and, by inference, the vertical profile of latent heating and 2) the utility of lightning observations in delineating convective regime changes.


Sign in / Sign up

Export Citation Format

Share Document