scholarly journals A Summary of Precipitation Characteristics from the 2006–11 Northern Australian Wet Seasons as Revealed by ARM Disdrometer Research Facilities (Darwin, Australia)

2014 ◽  
Vol 53 (5) ◽  
pp. 1213-1231 ◽  
Author(s):  
Scott E. Giangrande ◽  
Mary Jane Bartholomew ◽  
Mick Pope ◽  
Scott Collis ◽  
Michael P. Jensen

AbstractThe variability of rainfall and drop size distributions (DSDs) as a function of large-scale atmospheric conditions and storm characteristics is investigated using measurements from the Atmospheric Radiation Measurement Program (ARM) facility at Darwin, Australia. Observations are obtained from an impact disdrometer with a near continuous record of operation over five consecutive wet seasons (2006–11). Bulk rainfall characteristics are partitioned according to diurnal accumulation, convective and stratiform precipitation classifications, objective monsoonal regime, and MJO phase. Findings support previous Darwin studies suggesting a significant diurnal and DSD parameter signal associated with both convective–stratiform and wet season monsoonal regime classification. Negligible MJO phase influence is determined for cumulative disdrometric statistics over the Darwin location.

2018 ◽  
Vol 18 (12) ◽  
pp. 9121-9145 ◽  
Author(s):  
Die Wang ◽  
Scott E. Giangrande ◽  
Mary Jane Bartholomew ◽  
Joseph Hardin ◽  
Zhe Feng ◽  
...  

Abstract. This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (wet or dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program tropical deployments, with distributions favoring higher concentrations of smaller drops than ARM continental examples. Oceanic-type precipitation characteristics are predominantly observed during the Amazon wet seasons. An exploration of the controls on wet season precipitation properties reveals that wind direction, compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those wet season Amazon events having an oceanic character for their precipitation drop size distributions.


2020 ◽  
Author(s):  
Kuranoshin Kato ◽  
Kengo Matsumoto ◽  
Takato Yamatogi ◽  
Chihiro Miyake

<p>   In East Asia, a significant subtropical front called the Baiu/Meiyu front appears just before midsummer and brings the huge rainfall there, greatly influenced by the Asian summer monsoon. However, large-scale atmospheric features and rainfall characteristics (such as convective or stratiform rain) as well as the total rainfall amount around the front show rather great differences between the western and eastern portions. For example, in the western part of the Japan Islands (especially around Kyushu District, the most western part) and the Changjiang River Basin in Central China, the more frequent appearance of the heavy rainfall events due to the organized deep convective clouds than in the eastern Japan results in the larger climatological precipitation amount there. This is greatly related to the larger moisture transport toward the western part of the Baiu front than toward the eastern part. On the other hand, the rainfall characteristics around the front in the eastern Japan tend to be largely influenced by the cool Okhotsk air mass with rather stable stratification. Furthermore, their year-to-year, intraseasonal and short-period variations including the diversity of the “heavy rainfall types” are also very large.</p><p>The extreme events in association with the Baiu/Meiyu activity are greatly reflected by the above variability of the frontal activity. Inversely, it would be also important viewpoint that detailed examination of some extreme events could lead to the better understanding of the “dynamic climatological features” of the Baiu/Meiyu system itself.</p><p>In such concept, the present study will examine the frontal-scale rainfall features and the atmospheric conditions for the extremely heavy rainfall event around the Baiu front in western to central Japan during 5-7 July 2018. Although it is the common feature for the Baiu frontal rainfall heavy in western Japan that the frequent appearance of the meso-scale intense rain bands results in the huge total rainfall amount there, it is noted that the extremely large total rainfall area was distributed much more widely up to the central Japan with also considerable contribution of the long-persistent “not-so-intense rain” there, as often found in the heavy rainfall in the eastern Japan. Our analyses of the atmospheric fields suggest that this extreme event seems to be characterized by the strong mixture both of the large-scale factors for activating the “western Japan Baiu” and the “eastern Japan Baiu”.</p><p>As for the precipitation analyses, the 10-minute precipitation data at many meteorological stations in the Japan Islands area were used to discuss on the frontal-scale “rainfall characteristics” as well as the total rainfall amounts.</p>


2014 ◽  
Vol 71 (3) ◽  
pp. 1105-1120 ◽  
Author(s):  
Vickal V. Kumar ◽  
Alain Protat ◽  
Christian Jakob ◽  
Peter T. May

Abstract Some cumulus clouds with tops between 3 and 7 km (Cu3km–7km) remain in this height region throughout their lifetime (congestus) while others develop into deeper clouds (cumulonimbus). This study describes two techniques to identify the congestus and cumulonimbus cloud types using data from scanning weather radar and identifies the atmospheric conditions that regulate these two modes. A two-wet-season cumulus cloud database of the Darwin C-band polarimetric radar is analyzed and the two modes are identified by examining the 0-dBZ cloud-top height (CTH) of the Cu3km–7km cells over a sequence of radar scans. It is found that ~26% of the classified Cu3km–7km population grow into cumulonimbus clouds. The cumulonimbus cells exhibit reflectivities, rain rates, and drop sizes larger than the congestus cells. The occurrence frequency of cumulonimbus cells peak in the afternoon at ~1500 local time—a few hours after the peak in congestus cells. The analysis of Darwin International Airport radiosonde profiles associated with the two types of cells shows no noticeable difference in the thermal stability rates, but a significant difference in midtropospheric (5–10 km) relative humidity. Moister conditions are found in the hours preceding the cumulonimbus cells when compared with the congestus cells. Using a moisture budget dataset derived for the Darwin region, it is shown that the existence of cumulonimbus cells, and hence deep convection, is mainly determined by the presence of the midtroposphere large-scale upward motion and not merely by the presence of congestus clouds prior to deep convection. This contradicts the thermodynamic viewpoint that the midtroposphere moistening prior to deep convection is solely due to the preceding cumulus congestus cells.


2018 ◽  
Author(s):  
Die Wang ◽  
Scott E. Giangrande ◽  
Mary Jane Bartholomew ◽  
Joseph Hardin ◽  
Zhe Feng ◽  
...  

Abstract. This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoring higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. An exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.


2020 ◽  
Author(s):  
Cornelia Klein ◽  
Wolfgang Gurgiser ◽  
Fabien Maussion

<p>The climate in the Rio Santa basin (Peruvian Andes) is characterized by a strong seasonality, with a wet season reaching its maximum intensity from December to March. Understanding the characteristics and variability of rainfall during the wet season is fundamental for small-scale farmers based on rain-fed agriculture, and is one of the main objectives of the recently started AgroClim-Huaraz project (http://agroclima-huaraz.info). Based on a combination of rain gauge observations and ERA5 reanalysis data, we demonstrate that the occurrence of local wet and dry spells in the Rio Santa basin is strongly connected to large scale circulation patterns that are known to drive such rainfall variability in the wider tropical Andes. Changes in upper-tropospheric zonal wind and the location of the Bolivian High pressure system therefore crucially affect the local water availability. </p><p>On large spatio-temporal scales, this connection was claimed to have already caused a decrease in precipitation in the Central Andes in response to global warming and could be associated with a projected four-fold increase of dry years by 2100. Consequently, it is of great importance to (i) evaluate the validity of this drying by trend analyses from different sources and (ii) understand the implications of a potential large-scale trend from a local perspective that takes into account the heterogeneity of rainfall distributions in complex terrain. </p><p>We therefore use ERA5 to evaluate whether and how observed changes in this teleconnection affect local atmospheric conditions and convective environments. In addition, we infer associated potential trends in rainfall frequency and extremes, cloud cover and convective intensity for the Rio Santa Basin from CHIRPS rainfall estimates and GRIDSAT brightness temperatures down to a resolution of 4-7km for 1983-2019.</p><p>Based on observations, our results illustrate how large-scale climatic changes may translate into smaller scales. This will in further steps not only help to validate and constrain regional dynamical downscaling attempts but also inform about the representativeness of coarser-scale climate projections for local conditions in Andean valleys.</p><p> </p>


2006 ◽  
Vol 128 (4) ◽  
pp. 644-647 ◽  
Author(s):  
Bassem S. El-Dasher ◽  
Sharon G. Torres

The precipitation characteristics of tetrahedrally close-packed (TCP) phases during the welding and the subsequent solution annealing process of Alloy 22 1 1∕2in. thick plate double-U prototypical welds are investigated. Electron backscatter diffraction was used to provide large scale microstructural observation of the weld cross section, and scanning electron microscopy was used to map the location of the TCP phases. Analysis shows that TCP precipitation occurs congruent to the weld passes, with the solution annealing reducing the sizes of coarser precipitates.


2016 ◽  
Vol 29 (14) ◽  
pp. 5281-5297 ◽  
Author(s):  
Who M. Kim ◽  
Stephen Yeager ◽  
Ping Chang ◽  
Gokhan Danabasoglu

Abstract Deep convection in the Labrador Sea (LS) resumed in the winter of 2007/08 under a moderately positive North Atlantic Oscillation (NAO) state. This is in sharp contrast with the previous winter with weak convection, despite a similar positive NAO state. This disparity is explored here by analyzing reanalysis data and forced-ocean simulations. It is found that the difference in deep convection is primarily due to differences in large-scale atmospheric conditions that are not accounted for by the conventional NAO definition. Specifically, the 2007/08 winter was characterized by an atmospheric circulation anomaly centered in the western North Atlantic, rather than the eastern North Atlantic that the conventional NAO emphasizes. This anomalous circulation was also accompanied by anomalously cold conditions over northern North America. The controlling influence of these atmospheric conditions on LS deep convection in the 2008 winter is confirmed by sensitivity experiments where surface forcing and/or initial conditions are modified. An extended analysis for the 1949–2009 period shows that about half of the winters with strong heat losses in the LS are associated with such a west-centered circulation anomaly and cold conditions over northern North America. These are found to be accompanied by La Niña–like conditions in the tropical Pacific, suggesting that the atmospheric response to La Niña may have a strong influence on LS deep convection.


2021 ◽  
Vol 13 (13) ◽  
pp. 2564
Author(s):  
Mauro Martini ◽  
Vittorio Mazzia ◽  
Aleem Khaliq ◽  
Marcello Chiaberge

The increasing availability of large-scale remote sensing labeled data has prompted researchers to develop increasingly precise and accurate data-driven models for land cover and crop classification (LC&CC). Moreover, with the introduction of self-attention and introspection mechanisms, deep learning approaches have shown promising results in processing long temporal sequences in the multi-spectral domain with a contained computational request. Nevertheless, most practical applications cannot rely on labeled data, and in the field, surveys are a time-consuming solution that pose strict limitations to the number of collected samples. Moreover, atmospheric conditions and specific geographical region characteristics constitute a relevant domain gap that does not allow direct applicability of a trained model on the available dataset to the area of interest. In this paper, we investigate adversarial training of deep neural networks to bridge the domain discrepancy between distinct geographical zones. In particular, we perform a thorough analysis of domain adaptation applied to challenging multi-spectral, multi-temporal data, accurately highlighting the advantages of adapting state-of-the-art self-attention-based models for LC&CC to different target zones where labeled data are not available. Extensive experimentation demonstrated significant performance and generalization gain in applying domain-adversarial training to source and target regions with marked dissimilarities between the distribution of extracted features.


2012 ◽  
Vol 12 (3) ◽  
pp. 639-649 ◽  
Author(s):  
J. A. Santos ◽  
M. A. Reis ◽  
J. Sousa ◽  
S. M. Leite ◽  
S. Correia ◽  
...  

Abstract. An analysis of the cloud-to-ground discharges (CGD) over Portugal is carried out using data collected by a network of sensors maintained by the Portuguese Meteorological Institute for 2003–2009 (7 yr). Only cloud-to-ground flashes are considered and negative polarity CGD are largely dominant. The total number of discharges reveals a considerable interannual variability and a large irregularity in their distribution throughout the year. However, it is shown that a large number of discharges occur in the May–September period (71%), with a bimodal distribution that peaks in May and September, with most of the lightning activity recorded in the afternoon (from 16:00 to 18:00 UTC). In spring and autumn the lightning activity tends to be scattered throughout the country, whereas in summer it tends to be more concentrated over northeastern Portugal. Winter generally presents low lightning activity. Furthermore, two significant couplings between the monthly number of days with discharges and the large-scale atmospheric circulation are isolated: a regional forcing, predominantly in summer, and a remote forcing. In fact, the identification of daily lightning regimes revealed three important atmospheric conditions for triggering lightning activity: regional cut-off lows, cold troughs induced by remote low pressure systems and summertime regional low pressures at low-tropospheric levels combined with a mid-tropospheric cold trough.


2005 ◽  
Vol 44 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Nicholas F. Anderson ◽  
Cedric A. Grainger ◽  
Jeffrey L. Stith

Abstract Airborne in situ measurements of updrafts in tropical convective storms were analyzed to determine the similarities and differences between updrafts in a tropical continental and a tropical oceanic region. Two hundred fifteen updraft cores from the Tropical Rainfall Measuring Mission (TRMM) component of the Large Scale Biosphere–Atmosphere (LBA) experiment (tropical continental wet season) and 377 updraft cores from the Kwajalein Experiment (KWAJEX) (tropical oceanic) were analyzed in a similar manner to that of previous studies of tropical updrafts. Average speed, maximum speed, width, and mass flux of the updraft cores from the TRMM-LBA and KWAJEX were generally similar to each other and also were similar to results from previous studies of tropical updrafts.


Sign in / Sign up

Export Citation Format

Share Document