scholarly journals Atmospheric Conditions Associated with Labrador Sea Deep Convection: New Insights from a Case Study of the 2006/07 and 2007/08 Winters

2016 ◽  
Vol 29 (14) ◽  
pp. 5281-5297 ◽  
Author(s):  
Who M. Kim ◽  
Stephen Yeager ◽  
Ping Chang ◽  
Gokhan Danabasoglu

Abstract Deep convection in the Labrador Sea (LS) resumed in the winter of 2007/08 under a moderately positive North Atlantic Oscillation (NAO) state. This is in sharp contrast with the previous winter with weak convection, despite a similar positive NAO state. This disparity is explored here by analyzing reanalysis data and forced-ocean simulations. It is found that the difference in deep convection is primarily due to differences in large-scale atmospheric conditions that are not accounted for by the conventional NAO definition. Specifically, the 2007/08 winter was characterized by an atmospheric circulation anomaly centered in the western North Atlantic, rather than the eastern North Atlantic that the conventional NAO emphasizes. This anomalous circulation was also accompanied by anomalously cold conditions over northern North America. The controlling influence of these atmospheric conditions on LS deep convection in the 2008 winter is confirmed by sensitivity experiments where surface forcing and/or initial conditions are modified. An extended analysis for the 1949–2009 period shows that about half of the winters with strong heat losses in the LS are associated with such a west-centered circulation anomaly and cold conditions over northern North America. These are found to be accompanied by La Niña–like conditions in the tropical Pacific, suggesting that the atmospheric response to La Niña may have a strong influence on LS deep convection.

1998 ◽  
Vol 180 ◽  
pp. 163-167
Author(s):  
Antoon Kuijpers ◽  
Jørn Bo Jensen ◽  
Simon R . Troelstra ◽  
And shipboard scientific party of RV Professor Logachev and RV Dana

Direct interaction between the atmosphere and the deep ocean basins takes place today only in the Southern Ocean near the Antarctic continent and in the northern extremity of the North Atlantic Ocean, notably in the Norwegian–Greenland Sea and Labrador Sea. Cooling and evaporation cause surface waters in the latter region to become dense and sink. At depth, further mixing occurs with Arctic water masses from adjacent polar shelves. Export of these water masses from the Norwegian–Greenland Sea (Norwegian Sea Overflow Water) to the North Atlantic basin occurs via two major gateways, the Denmark Strait system and the Faeroe– Shetland Channel and Faeroe Bank Channel system (e.g. Dickson et al. 1990; Fig.1). Deep convection in the Labrador Sea produces intermediate waters (Labrador Sea Water), which spreads across the North Atlantic. Deep waters thus formed in the North Atlantic (North Atlantic Deep Water) constitute an essential component of a global ‘conveyor’ belt extending from the North Atlantic via the Southern and Indian Oceans to the Pacific. Water masses return as a (warm) surface water flow. In the North Atlantic this is the Gulf Stream and the relatively warm and saline North Atlantic Current. Numerous palaeo-oceanographic studies have indicated that climatic changes in the North Atlantic region are closely related to changes in surface circulation and in the production of North Atlantic Deep Water. Abrupt shut-down of the ocean-overturning and subsequently of the conveyor belt is believed to represent a potential explanation for rapid climate deterioration at high latitudes, such as those that caused the Quaternary ice ages. Here it should be noted, that significant changes in deep convection in Greenland waters have also recently occurred. While in the Greenland Sea deep water formation over the last decade has drastically decreased, a strong increase of deep convection has simultaneously been observed in the Labrador Sea (Sy et al. 1997).


2012 ◽  
Vol 47 (3-4) ◽  
pp. 421-435 ◽  
Author(s):  
Xuezhi Bai ◽  
Jia Wang

Atmospheric teleconnection circulation patterns associated with severe and mild ice cover over the Great Lakes are investigated using the composite analysis of lake ice data and National Center of Environmental Prediction (NCEP) reanalysis data for the period 1963–2011. The teleconnection pattern associated with the severe ice cover is the combination of a negative North Atlantic Oscillation (NAO) or Arctic Oscillation (AO) and negative phase of Pacific/North America (PNA) pattern, while the pattern associated with the mild ice cover is the combination of a positive PNA (or an El Niño) and a positive phase of the NAO/AO. These two extreme ice conditions are associated with the North American ridge–trough variations. The intensified ridge–trough system produces a strong northwest-to-southeast tilted ridge and trough and increases the anomalous northwesterly wind, advecting cold, dry Arctic air to the Great Lakes. The weakened ridge–trough system produces a flattened ridge and trough, and promotes a climatological westerly wind, advecting warm, dry air from western North America to the Great Lakes. Although ice cover for all the individual lakes responds roughly linearly and symmetrically to both phases of the NAO/AO, and roughly nonlinearly and asymmetrically to El Niño and La Niña events, the overall ice cover response to individual NAO/AO or Niño3.4 index is not statistically significant. The combined NAO/AO and Niño3.4 indices can be used to reliably project severe ice cover during the simultaneous –NAO/AO and La Niña events, and mild ice cover during the simultaneous +NAO/AO and El Niño events.


2020 ◽  
Author(s):  
Pascale Lherminier ◽  
Herlé Mercier ◽  
Fiz F. Perez ◽  
Marcos Fontela

<p><span>According to the subpolar AMOC index built from ARGO and altimetry, the AMOC amplitude across the OVIDE section (from Greenland to Portugal) was similar to that of the mid-1990s between 2014 and 2017, i.e. 4-5 Sv above the level of the 2000s. It then returned to average values in 2018. The same index computed independently from the biennial summer cruises over 2002-2018 confirms this statement. Interestingly, despite the concomitant cold and fresh anomaly in the subpolar Atlantic, the heat flux across OVIDE remains correlated with the AMOC amplitude. This can be explained by the paths taken by the North Atlantic Current and the transport anomalies in the subarctic front. In 2014, the OVIDE section was complemented by a section from Greenland to Newfoundland (GA01), showing how the water of the lower limb of the AMOC was densified by deep convection in the Labrador Sea. The spatial patterns of volume, heat, salt and oxygen transport anomalies after 2014 will be discussed at the light of the 2000s average.</span></p>


2011 ◽  
Vol 11 (11) ◽  
pp. 30457-30485 ◽  
Author(s):  
P. Groenemeijer ◽  
G. C. Craig

Abstract. The stochastic Plant-Craig scheme for deep convection was implemented in the COSMO mesoscale model and used for ensemble forecasting. Ensembles consisting of 100 48 h forecasts at 7 km horizontal resolution were generated for a 2000 × 2000 km domain covering central Europe. Forecasts were made for seven case studies and characterized by different large-scale meteorological environments. Each 100 member ensemble consisted of 10 groups of 10 members, with each group driven by boundary and initial conditions from a selected member from the global ECMWF Ensemble Prediction System. The precipitation variability within and among these groups of members was computed, and it was found that the relative contribution to the ensemble variance introduced by the stochastic convection scheme was substantial, amounting to as much as 76% of the total variance in the ensemble in one of the studied cases. The impact of the scheme was not confined to the grid scale, and typically contributed 25–50% of the total variance even after the precipitation fields had been smoothed to a resolution of 35 km. The variability of precipitation introduced by the scheme was approximately proportional to the total amount of convection that occurred, while the variability due to large-scale conditions changed from case to case, being highest in cases exhibiting strong mid-tropospheric flow and pronounced meso- to synoptic scale vorticity extrema. The stochastic scheme was thus found to be an important source of variability in precipitation cases of weak large-scale flow lacking strong vorticity extrema, but high convective activity.


2021 ◽  
Vol 2 (2) ◽  
pp. 395-412
Author(s):  
Patrick Martineau ◽  
Hisashi Nakamura ◽  
Yu Kosaka

Abstract. The wintertime influence of tropical Pacific sea surface temperature (SST) variability on subseasonal variability is revisited by identifying the dominant mode of covariability between 10–60 d band-pass-filtered surface air temperature (SAT) variability over the North American continent and winter-mean SST over the tropical Pacific. We find that the El Niño–Southern Oscillation (ENSO) explains a dominant fraction of the year-to-year changes in subseasonal SAT variability that are covarying with SST and thus likely more predictable. In agreement with previous studies, we find a tendency for La Niña conditions to enhance the subseasonal SAT variability over western North America. This modulation of subseasonal variability is achieved through interactions between subseasonal eddies and La Niña-related changes in the winter-mean circulation. Specifically, eastward-propagating quasi-stationary eddies over the North Pacific are more efficient in extracting energy from the mean flow through the baroclinic conversion during La Niña. Structural changes of these eddies are crucial to enhance the efficiency of the energy conversion via amplified downgradient heat fluxes that energize subseasonal eddy thermal anomalies. The enhanced likelihood of cold extremes over western North America is associated with both an increased subseasonal SAT variability and the cold winter-mean response to La Niña.


2015 ◽  
Vol 72 (9) ◽  
pp. 3378-3388 ◽  
Author(s):  
Usama Anber ◽  
Shuguang Wang ◽  
Adam Sobel

Abstract The effects of turbulent surface fluxes and radiative heating on tropical deep convection are compared in a series of idealized cloud-system-resolving simulations with parameterized large-scale dynamics. Two methods of parameterizing the large-scale dynamics are used: the weak temperature gradient (WTG) approximation and the damped gravity wave (DGW) method. Both surface fluxes and radiative heating are specified, with radiative heating taken as constant in the vertical in the troposphere. All simulations are run to statistical equilibrium. In the precipitating equilibria, which result from sufficiently moist initial conditions, an increment in surface fluxes produces more precipitation than an equal increment of column-integrated radiative heating. This is straightforwardly understood in terms of the column-integrated moist static energy budget with constant normalized gross moist stability. Under both large-scale parameterizations, the gross moist stability does in fact remain close to constant over a wide range of forcings, and the small variations that occur are similar for equal increments of surface flux and radiative heating. With completely dry initial conditions, the WTG simulations exhibit hysteresis, maintaining a dry state with no precipitation for a wide range of net energy inputs to the atmospheric column. The same boundary conditions and forcings admit a rainy state also (for moist initial conditions), and thus multiple equilibria exist under WTG. When the net forcing (surface fluxes minus radiative heating) is increased enough that simulations that begin dry eventually develop precipitation, the dry state persists longer after initialization when the surface fluxes are increased than when radiative heating is increased. The DGW method, however, shows no multiple equilibria in any of the simulations.


2018 ◽  
Author(s):  
Manon Tonnard ◽  
Hélène Planquette ◽  
Andrew R. Bowie ◽  
Pier van der Merwe ◽  
Morgane Gallinari ◽  
...  

Abstract. Dissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analysed using a SeaFAST-picoTM coupled to an Element XR HR-ICP-MS and provided interesting insights on the Fe sources in this area. Overall, DFe concentrations ranged from 0.09 ± 0.01 nmol L−1 to 7.8 ± 0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland and Newfoundland Margins likely due to riverine inputs from the Tagus River, meteoric water inputs and sedimentary inputs. Air-sea interactions were suspected to be responsible for the increase in DFe concentrations within subsurface waters of the Irminger Sea due to deep convection occurring the previous winter, that provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles from the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers were found to act as either a source or a sink of DFe depending on the nature of particles.


2021 ◽  
Author(s):  
Claus W. Böning ◽  
Arne Biastoch ◽  
Klaus Getzlaff ◽  
Patrick Wagner ◽  
Siren Rühs ◽  
...  

<p>A series of global ocean - sea ice model simulations is used to investigate the spatial structure and temporal variability of the sinking branch of the meridional overturning circulation (AMOC) in the subpolar North Atlantic. The experiments include hindcast simulations of the last six decades based on the high-resolution (1/20°) VIKING20X-model forced by the CORE and JRA55-do reanalysis products, supplemented by sensitivity studies with a 1/4°-configuration (ORCA025) aimed at elucidating the roles of variations in the wind stress and buoyancy fluxes. The experiments exhibit different multi-decadal trends in the AMOC, reflecting the well-known sensitivity of ocean-only models to subtle details in the configuration of the subarctic freshwater forcing. All experiments, however, concur in that the dense, southward branch of the overturning is mainly fed by “sinking” (in density space) in the Irminger and Iceland Basins, in accordance with the first results of the OSNAP observational program. Remarkably, the contribution of the Labrador Sea has remained small throughout the whole simulation period, even during the phase of extremely strong convection in the early 1990s: i.e., the rate of deep water exported from the subpolar North Atlantic by the DWBC off Newfoundland never differed by more than O(1 Sv) from the DWBC entering the Labrador Sea at Cape Farewell. The model solutions indicate a particular concentration of the sinking along the deep boundary currents south of the Denmark Straits and south of Iceland, pointing to a prime importance for the AMOC of the outflows from the Nordic Seas and their subsequent enhancement by the entrainment of intermediate waters. Since these include the water masses formed by deep convection in the Labrador and southern Irminger Seas, our study offers an alternative interpretation of the dynamical role of decadal changes in Labrador Sea convection intensity in terms of a remote effect on the deep transports established in the outflow regimes.</p>


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1247-1264 ◽  
Author(s):  
Lena M. Schulze Chretien ◽  
Eleanor Frajka-Williams

Abstract. The Labrador Sea is one of a small number of deep convection sites in the North Atlantic that contribute to the meridional overturning circulation. Buoyancy is lost from surface waters during winter, allowing the formation of dense deep water. During the last few decades, mass loss from the Greenland ice sheet has accelerated, releasing freshwater into the high-latitude North Atlantic. This and the enhanced Arctic freshwater export in recent years have the potential to add buoyancy to surface waters, slowing or suppressing convection in the Labrador Sea. However, the impact of freshwater on convection is dependent on whether or not it can escape the shallow, topographically trapped boundary currents encircling the Labrador Sea. Previous studies have estimated the transport of freshwater into the central Labrador Sea by focusing on the role of eddies. Here, we use a Lagrangian approach by tracking particles in a global, eddy-permitting (1/12∘) ocean model to examine where and when freshwater in the surface 30 m enters the Labrador Sea basin. We find that 60 % of the total freshwater in the top 100 m enters the basin in the top 30 m along the eastern side. The year-to-year variability in freshwater transport from the shelves to the central Labrador Sea, as found by the model trajectories in the top 30 m, is dominated by wind-driven Ekman transport rather than eddies transporting freshwater into the basin along the northeast.


2009 ◽  
Vol 22 (14) ◽  
pp. 3877-3893 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the variations in tropical cyclone (TC) genesis positions and their subsequent tracks for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga region (FST region) using Joint Typhoon Warning Center best-track data. Over the 36-yr period from 1970/71 to 2005/06, 122 cyclones are observed in the FST region. A large spread in the genesis positions is noted. During El Niño years, genesis is enhanced east of the date line, extending from north of Fiji to over Samoa, with the highest density centered around 10°S, 180°. During neutral years, maximum genesis occurs immediately north of Fiji with enhanced genesis south of Samoa. In La Niña years, there are fewer cyclones forming in the region than during El Niño and neutral years. During La Niña years, the genesis positions are displaced poleward of 12°S, with maximum density centered around 15°S, 170°E and south of Fiji. The cyclone tracks over the FST region are also investigated using cluster analysis. Tracks during the period 1970/71–2005/06 are conveniently described using three separate clusters, with distinct characteristics associated with different ENSO phases. Finally, the role of large-scale environmental factors affecting interannual variability of TC genesis positions and their subsequent tracks in the FST region are investigated. Favorable genesis positions are observed where large-scale environments have the following seasonal average thresholds: (i) 850-hPa cyclonic relative vorticity between −16 and −4 (×10−6 s−1), (ii) 200-hPa divergence between 2 and 8 (×10−6 s−1), and (iii) environmental vertical wind shear between 0 and 8 m s−1. The subsequent TC tracks are observed to be steered by mean 700–500-hPa winds.


Sign in / Sign up

Export Citation Format

Share Document