scholarly journals Influences on Observed Near-Surface Gust Factors in Landfalling U.S. Gulf Coast Hurricanes: 2004–08

2016 ◽  
Vol 55 (12) ◽  
pp. 2587-2611 ◽  
Author(s):  
Ian M. Giammanco ◽  
John L. Schroeder ◽  
Forrest J. Masters ◽  
Peter J. Vickery ◽  
Richard J. Krupar ◽  
...  

AbstractThe deployment of ruggedized surface observing platforms by university research programs in the path of landfalling tropical cyclones has yielded a wealth of information regarding the near-surface wind flow characteristics. Data records collected by Texas Tech University’s Wind Engineering Mobile Instrument Tower Experiment and StickNet probes and by the Florida Coastal Monitoring Program along the Gulf Coast of the United States from 2004 to 2008 were compiled to examine influences on near-surface gust factors. Archived composite reflectivity data from coastal WSR-88D instruments were also merged with the tower records to investigate the influence of precipitation structure. Wind records were partitioned into 10-min segments, and the ratio of the peak moving-average 3-s-gust wind speed to the segment mean was used to define a gust factor. Observations were objectively stratified into terrain exposure categories to determine if factors beyond those associated with surface frictional effects can be extracted from the observations. Wind flow characteristics within exposure classes were weakly influenced by storm-relative position and precipitation structure. Eyewall observations showed little difference in mean gust factors when compared with other regions. In convective precipitation, only peak gust factors were slightly larger than those found in stratiform conditions, with little differences in the mean. Gust factors decreased slightly with decreasing radial distance in rougher terrain exposures and did not respond to radar-observed changes in precipitation structure. In two limited comparisons, near-surface gusts did not exceed the magnitude of the wind maximum aloft detected through wind profiles that were derived from WSR-88D velocity–azimuth displays.

2009 ◽  
Vol 48 (3) ◽  
pp. 534-552 ◽  
Author(s):  
Bo Yu ◽  
Arindam Gan Chowdhury

Abstract Gust factors are used to convert peak wind speeds averaged over a relatively short period (e.g., 3 s) to mean wind speeds averaged over a relatively long reference period (e.g., 1 h) or vice versa. Such conversions are needed for engineering, climatological, or forecasting purposes. In this paper, gust factors in tropical cyclone (TC) winds are estimated from Florida Coastal Monitoring Program (FCMP) observations of near-surface TC wind speeds representative of flow over the sea surface and over open flat terrain in coastal areas. Comparisons are made with gust factors in extratropical winds over open flat terrain that are available in the literature. According to the results of the study, for gust durations of less than 20 s, the Durst model underestimates, and the Krayer–Marshall model overestimates, gust factors of TC winds over surfaces with roughness specified in the American Society of Civil Engineers (ASCE) 7 Standard Commentary as typical of open terrain. Consideration should be given to these findings when updating the gust factors provided in the ASCE 7 Standard Commentary. The study also compares gust factors in TC winds obtained from FCMP data with gust factors in extratropical winds obtained from near-surface wind data collected at eight Automated Surface Observing System (ASOS) stations and concludes that, depending upon terrain roughness, gust factors in TC winds can be higher by about 10%–15% than gust factors in extratropical winds. The study also presents FCMP-based estimates of turbulence intensities and their variability and shows that turbulence intensities in TC winds increase as the terrain roughness increases. The longitudinal turbulence intensity can vary from storm to storm and can exceed its typical value by as much as 20%. It is recommended that future TC wind measurement campaigns obtain temperature data usable for stratification estimation purposes, as well as information on waves and storm surge upwind of the anemometer towers.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 888 ◽  
Author(s):  
Zaizhong Ma ◽  
Bin Liu ◽  
Avichal Mehra ◽  
Ali Abdolali ◽  
Andre van der Westhuysen ◽  
...  

Realistic wind information is critical for accurate forecasts of landfalling hurricanes. In order to provide more realistic near-surface wind forecasts of hurricanes over coastal regions, high-resolution land–sea masks are considered. As a leading hurricane modeling system, the National Centers for Environmental Prediction (NCEP) Hurricane Weather Research Forecast (HWRF) system has been widely used in both operational and research environments for studying hurricanes in different basins. In this study, high-resolution land–sea mask datasets are introduced to the nested domain of HWRF, for the first time, as an attempt to improve hurricane wind forecasts. Four destructive North Atlantic hurricanes (Harvey and Irma in 2017; and Florence and Michael in 2018), which brought historic wind damage and storm surge along the Eastern Seaboard of the United States and Northeastern Gulf Coast, were selected to demonstrate the methodology of extending the capability to HWRF, due to the introduction of the high-resolution land–sea masks into the nested domains for the first time. A preliminary assessment of the numerical experiments with HWRF shows that the introduction of high-resolution land–sea masks into the nested domains produce significantly more accurate definitions of coastlines, land-use, and soil types. Furthermore, the high-resolution land–sea mask not only improves the quality of simulated wind information along the coast, but also improves the hurricane track, intensity, and storm-size predictions.


1991 ◽  
Vol 12 (2) ◽  
pp. 140-146 ◽  
Author(s):  
Jeffrey A. Lee

2015 ◽  
Vol 15 (7) ◽  
pp. 3785-3801 ◽  
Author(s):  
B. W. Butler ◽  
N. S. Wagenbrenner ◽  
J. M. Forthofer ◽  
B. K. Lamb ◽  
K. S. Shannon ◽  
...  

Abstract. A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., ~ 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The wind data are presented in terms of four flow regimes: upslope, afternoon, downslope, and a synoptically driven regime. There were notable differences in the data collected from the two terrain types. For example, wind speeds on the isolated mountain increased with distance upslope during upslope flow, but generally decreased with distance upslope at the river canyon site during upslope flow. In a downslope flow, wind speed did not have a consistent trend with position on the isolated mountain, but generally increased with distance upslope at the river canyon site. The highest measured speeds occurred during the passage of frontal systems on the isolated mountain. Mountaintop winds were often twice as high as wind speeds measured on the surrounding plain. The highest speeds measured in the river canyon occurred during late morning hours and were from easterly down-canyon flows, presumably associated with surface pressure gradients induced by formation of a regional thermal trough to the west and high pressure to the east. Under periods of weak synoptic forcing, surface winds tended to be decoupled from large-scale flows, and under periods of strong synoptic forcing, variability in surface winds was sufficiently large due to terrain-induced mechanical effects (speed-up over ridges and decreased speeds on leeward sides of terrain obstacles) that a large-scale mean flow would not be representative of surface winds at most locations on or within the terrain feature. These findings suggest that traditional operational weather model (i.e., with numerical grid resolutions of around 4 km or larger) wind predictions are not likely to be good predictors of local near-surface winds on sub-grid scales in complex terrain. Measurement data can be found at http://www.firemodels.org/index.php/windninja-introduction/windninja-publications.


2015 ◽  
Vol 30 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Bryce Tyner ◽  
Anantha Aiyyer ◽  
Jonathan Blaes ◽  
Donald Reid Hawkins

Abstract In this study, several analyses were conducted that were aimed at improving sustained wind speed and gust forecasts for tropical cyclones (TCs) affecting coastal regions. An objective wind speed forecast analysis of recent TCs affecting the mid-Atlantic region was first conducted to set a benchmark for improvement. Forecasts from the National Digital Forecast Database were compared to observations and surface wind analyses in the region. The analysis suggests a general overprediction of sustained wind speeds, especially for areas affected by the strongest winds. Currently, National Weather Service Weather Forecast Offices use a software tool known as the Tropical Cyclone Forecast/Advisory (TCM) wind tool (TCMWindTool) to develop their wind forecast grids. The tool assumes linear decay in the sustained wind speeds when interpolating the National Hurricane Center 12–24-hourly TCM product to hourly grids. An analysis of postlandfall wind decay for recent TCs was conducted to evaluate this assumption. Results indicate that large errors in the forecasted wind speeds can emerge, especially for stronger storms. Finally, an analysis of gust factors for recent TCs affecting the region was conducted. Gust factors associated with weak sustained wind speeds are shown to be highly variable but average around 1.5. The gust factors decrease to values around 1.2 for wind speeds above 40 knots (kt; 1 kt = 0.51 m s−1) and are in general insensitive to the wind direction, suggesting local rather than upstream surface roughness largely dictates the gust factor at a given location. Forecasters are encouraged to increase land reduction factors used in the TCMWindTool and to modify gust factors to account for factors including the sustained wind speed and local surface roughness.


2010 ◽  
Vol 23 (5) ◽  
pp. 1209-1225 ◽  
Author(s):  
Hui Wan ◽  
Xiaolan L. Wang ◽  
Val R. Swail

Abstract Near-surface wind speeds recorded at 117 stations in Canada for the period from 1953 to 2006 were analyzed in this study. First, metadata and a logarithmic wind profile were used to adjust hourly wind speeds measured at nonstandard anemometer heights to the standard 10-m level. Monthly mean near-surface wind speed series were then derived and subjected to a statistical homogeneity test, with homogeneous monthly mean geostrophic wind (geowind) speed series being used as reference series. Homogenized monthly mean near-surface wind speed series were obtained by adjusting all significant mean shifts, using the results of the statistical test and modeling along with all available metadata, and were used to assess the long-term trends. This study shows that station relocation and anemometer height change are the main causes for discontinuities in the near-surface wind speed series, followed by instrumentation problems or changes, and observing environment changes. It also shows that the effects of artificial mean shifts on the results of trend analysis are remarkable, and that the homogenized near-surface wind speed series show good spatial consistency of trends, which are in agreement with long-term trends estimated from independent datasets, such as surface winds in the United States and cyclone activity indices and ocean wave heights in the region. These indicate success in the homogenization of the wind data. During the period analyzed, the homogenized near-surface wind speed series show significant decreases throughout western Canada and most parts of southern Canada (except the Maritimes) in all seasons, with significant increases in the central Canadian Arctic in all seasons and in the Maritimes in spring and autumn.


Author(s):  
Y. El. Hadri ◽  
M. Slizhe ◽  
K. Sernytska

The purpose of the study is to determine the features of the spatial distribution of the wind speed in Marrakesh - Safi region in 2021-2050, as well as the distribution of the specific power of the wind flow at various altitudes above the earth’s surface to determine the wind class of the area in the coming decades. Currently, the region has two large wind farms: Essaouira-Amogdoul and Tarfayer. To assess the future state of climate in Marrakesh − Safi region, the results of calculations of regional climate models (RCM) of the CORDEX-Africa project for the period 2021-2050 were used. The RCM modeling was carried out for the region of Africa, in a rectangular coordinate system with a spatial resolution of ~ 44 km. Model calculation was performed taking into account the greenhouse gas concentration trajectory of RCP 4.5. As a result of simulation for the period 2021-2050, mean monthly values of wind speed "sfcWind" (m·s-1) and the daily maximum near-surface wind speed "sfcwindmax" (m·s-1) at 10 m height were obtained. Then, based on the wind speed rows, the values of the wind power density at a height of 50 m and 100 m were calculated. The results of model calculations of wind speed showed that the ensemble mean of wind speed for the period 2021-2050 will be from 3.8 m∙s-1 in Kelaat Sraghna Province to 7.2 m∙s-1 on the stretch of the Atlantic coast between Cap Sim and Cap Tafelny.The distribution over the territory will be influenced by proximity to the ocean, models predict the highest wind speeds on the coast, and when moving deep into the region, the wind speed will decrease.The analysis of simulation results showed that in the coastal areas of the region favorable conditions in terms of wind energy development will remain, and the highest wind speeds of the model are predicted on the Atlantic coast between Cap Sim and Cap Tafelny. By the size of the specific power of the wind flow, significant wind resources will have the territory lying along the coast from Cap Sim to the southern border of the region, and in the area of the power plants Essaouira-Amogdoul and Tarfayer models predict the conditions corresponding to the outstanding wind power class.


2014 ◽  
Vol 14 (11) ◽  
pp. 16821-16863
Author(s):  
B. W. Butler ◽  
N. S. Wagenbrenner ◽  
J. M. Forthofer ◽  
B. K. Lamb ◽  
K. S. Shannon ◽  
...  

Abstract. A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., ∼100 m); however, there are very limited observational data available for evaluating these high resolution models. This study presents high-resolution surface wind datasets collected from an isolated mountain and a steep river canyon. The wind data are presented in terms of four flow regimes: upslope, afternoon, downslope, and a synoptically-driven regime. There were notable differences in the data collected from the two terrain types. For example, wind speeds collected on the isolated mountain increased with distance upslope during upslope flow, but generally decreased with distance upslope at the river canyon site during upslope flow. Wind speed did not have a simple, consistent trend with position on the slope during the downslope regime on the isolated mountain, but generally increased with distance upslope at the river canyon site. The highest measured speeds occurred during the passage of frontal systems on the isolated mountain. Mountaintop winds were often twice as high as wind speeds measured on the surrounding plain. The highest speeds measured in the river canyon occurred during late morning hours and were from easterly downcanyon flows, presumably associated with surface pressure gradients induced by formation of a regional thermal trough to the west and high pressure to the east. Under periods of weak synoptic forcing, surface winds tended to be decoupled from large-scale flows, and under periods of strong synoptic forcing, variability in surface winds was sufficiently large due to terrain-induced mechanical effects (speed-up over ridges and decreased speeds on leeward sides of terrain obstacles) that a large-scale mean flow would not be representative of surface winds at most locations on or within the terrain feature. These findings suggest that traditional operational weather model (i.e., with numerical grid resolutions of around 4 km or larger) wind predictions are not likely to be good predictors of local near-surface winds at sub-grid scales in complex terrain. The data from this effort are archived and available at: http://www.firemodels.org/index.php/windninja-introduction/windninja-publications.


1996 ◽  
Vol 6 (2) ◽  
pp. 71 ◽  
Author(s):  
BE Potter

Lower atmosphere moistures, temperatures, winds, and lapse rates are examined for the days of 339 fires over 400 ha in the United States from 1971 through 1984. These quantities are compared with a climatology dataset from the same 14-year period using 2-way unbalanced analysis of variance. The results show that the fire-day surface-air temperature and moisture differ from the climatology at the 0.001 significance level. Near-surface wind shear does not appear to differ significantly between fire and climatology days. Results are inconclusive for wind speed and surface lapse rate.


2017 ◽  
Vol 98 (12) ◽  
pp. 2619-2640 ◽  
Author(s):  
Lanqiang Bai ◽  
Zhiyong Meng ◽  
Ling Huang ◽  
Lijun Yan ◽  
Zhaohui Li ◽  
...  

Abstract This work presents an integrated damage, visual, and radar analysis of a tropical cyclone (TC) tornado that has not been documented as detailed as midlatitude tornadoes. On 4 October 2015, an enhanced Fujita 3 (EF3) tornado spawned into Typhoon Mujigae and hit Foshan, Guangdong Province, China. This tornado was generated in a minisupercell ∼350 km northeast of the TC center and lasted about 32 minutes, leaving a southeast-to-northwest damage swath 30.85 km long and 20–570 m wide. Near-surface wind patterns and the size of the tornado, juxtaposition of the condensation funnel with the damage swath and radar signatures, and consistency between near-surface wind speed estimated from visual observations and that estimated using EF scale were revealed based on ground and aerial surveys, radar and surface observations, photographs, and tornado videos. Tornado videos showed two occurrences of vertical subvortices followed by the formation of a horizontal vortex. Some features of the tornado, the parent supercell and mesocyclone, and the convective environment were compared to their U.S. counterparts. This work provides a case review of a tornado with the most comprehensive information ever in China. Damage indicators used to estimate the tornado intensity in this Chinese case were compared with those in the United States, demonstrating the potential applicability of the EF scale in tornado damage surveys outside the United States.


Sign in / Sign up

Export Citation Format

Share Document