Twenty-First-Century Arctic Climate Change in CCSM4

2012 ◽  
Vol 25 (8) ◽  
pp. 2696-2710 ◽  
Author(s):  
Stephen J. Vavrus ◽  
Marika M. Holland ◽  
Alexandra Jahn ◽  
David A. Bailey ◽  
Benjamin A. Blazey

Abstract The authors summarize the twenty-first-century Arctic climate simulated by NCAR’s Community Climate System Model, version 4 (CCSM4). Under a strong radiative forcing scenario, the model simulates a much warmer, wetter, cloudier, and stormier Arctic climate with considerably less sea ice and a fresher Arctic Ocean. The high correlation among the variables composing these changes—temperature, precipitation, cloudiness, sea level pressure (SLP), and ice concentration—suggests that their close coupling collectively represents a fingerprint of Arctic climate change. Although the projected changes in CCSM4 are generally consistent with those in other GCMs, several noteworthy features are identified. Despite more global warming in CCSM4, Arctic changes are generally less than under comparable greenhouse forcing in CCSM3, as represented by Arctic amplification (16% weaker) and the date of a seasonally ice-free Arctic Ocean (20 years later). Autumn is the season of the most pronounced Arctic climate change among all the primary variables. The changes are very similar across the five ensemble members, although SLP displays the largest internal variability. The SLP response exhibits a significant trend toward stronger extreme Arctic cyclones, implying greater wave activity that would promote coastal erosion. Based on a commonly used definition of the Arctic (the area encompassing the 10°C July air temperature isotherm), the region shrinks by about 40% during the twenty-first century, in conjunction with a nearly 10-K warming trend poleward of 70°N. Despite this pronounced long-term warming, CCSM4 simulates a hiatus in the secular Arctic climate trends during a decade-long stretch in the 2040s and to a lesser extent in the 2090s. These pauses occur despite averaging over five ensemble members and are remarkable because they happen under the most extreme greenhouse-forcing scenario and in the most climatically sensitive region of the world.

2006 ◽  
Vol 26 (6) ◽  
pp. 601-616 ◽  
Author(s):  
Haiyan Teng ◽  
Warren M. Washington ◽  
Gerald A. Meehl ◽  
Lawrence E. Buja ◽  
Gary W. Strand

Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


2017 ◽  
Vol 56 (9) ◽  
pp. 2393-2409 ◽  
Author(s):  
Rick Lader ◽  
John E. Walsh ◽  
Uma S. Bhatt ◽  
Peter A. Bieniek

AbstractClimate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.


2020 ◽  
pp. 000169931989090 ◽  
Author(s):  
Anna Kukkonen ◽  
Mark CJ Stoddart ◽  
Tuomas Ylä-Anttila

In this paper, we examine the centrality of policy actors and moral justifications in media debates on Arctic climate change in Finland and Canada from 2011–2015. We take a network approach on the media debates by analysing relations between the actors and justifications, using discourse network analysis on a dataset of 745 statements from four newspapers. We find that in both countries, governments and universities are the most central actors, whereas business actors are the least central. Justifications that value environmental sustainability and scientific knowledge are most central and used across actor types. However, ecological justifications are sometimes in conflict with market justifications. Government actors emphasize new economic possibilities in the Arctic whereas environmental organizations demand greater protection of the vulnerable Arctic. Ecological justifications and justifications that value international cooperation are more central in the Finnish debate, whereas justifications valuing sustainability and science, as well as those valuing national sovereignty, are more central in the Canadian debate. We conclude that in addition to the centrality of specific policy actors in media debates, the use of different types of moral justifications also reflects political power in the media sphere.


European View ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 156-162
Author(s):  
Romain Chuffart ◽  
Andreas Raspotnik

Dealing with climate change and developing the Arctic sustainably are often seen as both binary and contradictory sets of challenges. The EU is in a unique position in Arctic affairs: unlike non-Arctic states, it is part of and linked to the region. However, the EU is at risk of missing the opportunity to be a leader in setting standards for a coherent and sustainable approach for the region. The Arctic is often used as a symbol for global climate change and, conversely, climate change is also used as a reason for more Arctic engagement. Yet, the roots of global heating—greenhouse gas emissions—mostly originate from outside the region. This article asks whether the path towards more EU–Arctic involvement should start closer to home.


2012 ◽  
Vol 25 (11) ◽  
pp. 3661-3683 ◽  
Author(s):  
Gerald A. Meehl ◽  
Warren M. Washington ◽  
Julie M. Arblaster ◽  
Aixue Hu ◽  
Haiyan Teng ◽  
...  

Results are presented from experiments performed with the Community Climate System Model, version 4 (CCSM4) for the Coupled Model Intercomparison Project phase 5 (CMIP5). These include multiple ensemble members of twentieth-century climate with anthropogenic and natural forcings as well as single-forcing runs, sensitivity experiments with sulfate aerosol forcing, twenty-first-century representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100–2300. Equilibrium climate sensitivity of CCSM4 is 3.20°C, and the transient climate response is 1.73°C. Global surface temperatures averaged for the last 20 years of the twenty-first century compared to the 1986–2005 reference period for six-member ensembles from CCSM4 are +0.85°, +1.64°, +2.09°, and +3.53°C for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. The ocean meridional overturning circulation (MOC) in the Atlantic, which weakens during the twentieth century in the model, nearly recovers to early twentieth-century values in RCP2.6, partially recovers in RCP4.5 and RCP6, and does not recover by 2100 in RCP8.5. Heat wave intensity is projected to increase almost everywhere in CCSM4 in a future warmer climate, with the magnitude of the increase proportional to the forcing. Precipitation intensity is also projected to increase, with dry days increasing in most subtropical areas. For future climate, there is almost no summer sea ice left in the Arctic in the high RCP8.5 scenario by 2100, but in the low RCP2.6 scenario there is substantial sea ice remaining in summer at the end of the century.


2011 ◽  
Vol 24 (17) ◽  
pp. 4741-4756 ◽  
Author(s):  
Weilin Chen ◽  
Zhihong Jiang ◽  
Laurent Li

Probabilistic projection of climate change consists of formulating the climate change information in a probabilistic manner at either global or regional scale. This can produce useful results for studies of the impact of climate change impact and change mitigation. In the present study, a simple yet effective approach is proposed with the purpose of producing probabilistic results of climate change over China for the middle and end of the twenty-first century under the Special Report on Emissions Scenarios A1B (SRES A1B) emission scenario. Data from 28 coupled atmosphere–ocean general circulation models (AOGCMs) are used. The methodology consists of ranking the 28 models, based on their ability to simulate climate over China in terms of two model evaluation metrics. Different weights were then given to the models according to their performances in present-day climate. Results of the evaluation for the current climate show that five models that have relatively higher resolutions—namely, the Istituto Nazionale di Geofisica e Vulcanologia ECHAM4 (INGV ECHAM4), the third climate configuration of the Met Office Unified Model (UKMO HadCM3), the CSIRO Mark version 3.5 (Mk3.5), the NCAR Community Climate System Model, version 3 (CCSM3), and the Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2 (hires)]—perform better than others over China. Their corresponding weights (normalized to 1) are 0.289, 0.096, 0.058, 0.048, and 0.044, respectively. Under the A1B scenario, surface air temperature is projected to increase significantly for both the middle and end of the twenty-first century, with larger magnitude over the north and in winter. There are also significant increases in rainfall in the twenty-first century under the A1B scenario, especially for the period 2070–99. As far as the interannual variability is concerned, the most striking feature is that there are high probabilities for the future intensification of interannual variability of precipitation over most of China in both winter and summer. For instance, over the Yangtze–Huai River basin (28°–35°N, 105°–120°E), there is a 60% probability of increased interannual standard deviation of precipitation by 20% in summer, which is much higher than that of the mean precipitation. In general there are small differences between weighted and unweighted projections, but the uncertainties in the projected changes are reduced to some extent after weighting.


2013 ◽  
Vol 7 (2) ◽  
pp. 1495-1532 ◽  
Author(s):  
B. A. Blazey ◽  
M. M. Holland ◽  
E. C. Hunke

Abstract. Sea ice cover in the Arctic Ocean is a continued focus of attention. This study assesses the capability of hindcast simulations of the Community Climate System Model (CCSM) to reproduce observed snow depths and densities overlying the Arctic Ocean sea ice. The model is evaluated using measurements provided by historic Russian polar drift stations. Following the identification of seasonal biases produced in the simulations, the thermodynamic transfer through the snow – ice column is perturbed to determine model sensitivity to these biases. This study concludes that perturbations on the order of the observed biases result in modification of the annual mean conductive flux of 0.5 W m−2 relative to an unmodified simulation. The results suggest that the ice has a complex response to snow characteristics, with ice of different thicknesses producing distinct reactions. Consequently, we suggest that the inclusion of additional snow evolution processes such as blowing snow, densification, and seasonal changes in snow conductivity in sea ice models would increase the fidelity of the model with respect to the physical system. Moreover, our results suggest that simulated high latitude precipitation biases have important effects on the simulated ice conditions, resulting in impacts on the Arctic climate in general in large-scale climate.


2019 ◽  
Vol 32 (4) ◽  
pp. 675-693
Author(s):  
Sabaa Ahmad Khan

AbstractThe environmental and economic realities of Arctic climate change present novel problems for international law. Arctic warming and pollution raise important questions about responsibilities and accountabilities across borders, as they result from anthropogenic activities both within and outside the Arctic region, from the Global North and the Global South. Environmental interdependencies and economic development prospects connect in a nexus of risk and opportunity that raises difficult normative questions pertaining to Arctic governance and sovereignty. This article looks at how the Arctic has been produced in international legal spaces. It addresses the implication of states and Indigenous peoples in processes of Arctic governance. Looking at specific international legal instruments relevant to Arctic climate change and development, the author attempts to tease out the relationship between the concepts of Indigenous rights and state sovereignty that underlie these international legal realms. What do these international legal regimes tell us with respect to the role of Arctic Indigenous peoples and the role of states in governing the ‘global’ Arctic? It is argued that while international law has come a long way in recognizing the special status of Indigenous peoples in the international system, it still hesitates to recognize Indigenous groups as international law makers. Comparing the status of Indigenous peoples under specific international regimes to their role within the Arctic Council, it becomes evident that more participatory forms of global governance are entirely possible and long overdue.


2018 ◽  
Vol 13 (12) ◽  
pp. 125008 ◽  
Author(s):  
Igor V Polyakov ◽  
Andrey V Pnyushkov ◽  
Eddy C Carmack

Sign in / Sign up

Export Citation Format

Share Document