scholarly journals Radar-Observed Bulk Microphysics of Midlatitude Leading-Line Trailing-Stratiform Mesoscale Convective Systems

2018 ◽  
Vol 57 (10) ◽  
pp. 2231-2248
Author(s):  
Shawn L. Handler ◽  
Cameron R. Homeyer

AbstractIn 2013, all NEXRAD WSR-88D units in the United States were upgraded to dual polarization. Dual polarization allows for the identification of precipitation particle shape, size, orientation, and concentration. In this study, dual-polarization NEXRAD observations from 34 recent events are used to identify the bulk microphysical characteristics of a specific subset of mesoscale convective systems (MCSs), the leading-line trailing-stratiform (LLTS) MCS. NEXRAD observations are used to examine hydrometeor distributions in relative altitude to the 0°C level and as a function of storm life cycle, precipitation source (convective or stratiform), and storm environment. The analysis reveals that graupel particles are the most frequently classified hydrometeor class in a layer extending from the 0°C-level altitude to approximately 5 km above within the convective region. Below the 0°C level, rain is the most frequently classified hydrometeor, with small hail and graupel concentrations present throughout the LLTS system’s life cycle. The stratiform precipitation region contains small graupel concentrations in a shallow layer above the 0°C level, with pristine ice crystals being classified as the most frequently observed hydrometeor at higher altitudes and snow aggregates being classified as the most frequently observed hydrometeor at lower altitudes above the environmental 0°C level. Variations in most unstable convective available potential energy (MUCAPE) have the largest impact on the vertical distribution of hydrometeors, because more-unstable environments are characterized by a greater production of rimed ice.

2007 ◽  
Vol 22 (4) ◽  
pp. 813-838 ◽  
Author(s):  
Israel L. Jirak ◽  
William R. Cotton

Abstract Mesoscale convective systems (MCSs) have a large influence on the weather over the central United States during the warm season by generating essential rainfall and severe weather. To gain insight into the predictability of these systems, the precursor environments of several hundred MCSs across the United States were reviewed during the warm seasons of 1996–98. Surface analyses were used to identify initiating mechanisms for each system, and North American Regional Reanalysis (NARR) data were used to examine the environment prior to MCS development. Similarly, environments unable to support organized convective systems were also investigated for comparison with MCS precursor environments. Significant differences were found between environments that support MCS development and those that do not support convective organization. MCSs were most commonly initiated by frontal boundaries; however, features that enhance convective initiation are often not sufficient for MCS development, as the environment needs also to be supportive for the development and organization of long-lived convective systems. Low-level warm air advection, low-level vertical wind shear, and convective instability were found to be the most important parameters in determining whether concentrated convection would undergo upscale growth into an MCS. Based on these results, an index was developed for use in forecasting MCSs. The MCS index assigns a likelihood of MCS development based on three terms: 700-hPa temperature advection, 0–3-km vertical wind shear, and the lifted index. An evaluation of the MCS index revealed that it exhibits features consistent with common MCS characteristics and is reasonably accurate in forecasting MCSs, especially given that convective initiation has occurred, offering the possibility of usefulness in operational forecasting.


2018 ◽  
Vol 146 (3) ◽  
pp. 813-831 ◽  
Author(s):  
Rudi Xia ◽  
Da-Lin Zhang ◽  
Cuihong Zhang ◽  
Yongqing Wang

Abstract This study examines whether environmental conditions can control convective rainfall rates and cloud-to-ground (CG) lightning frequencies in mesoscale convective systems (MCSs) over north China (NC). A total of 60 identified MCSs over NC during June–August of 2008–13 were classified into 4 categories based on their high/low convective rainfall rates (HR/LR) and high/low CG lightning frequencies (HL/LL) (i.e., HRHL, HRLL, LRHL, and LRLL MCSs). MCSs with HR (HL) occurred most frequently in July (August), while those with LR or LL occurred most frequently in June; they followed closely seasonal changes. All MCSs were apt to form during afternoon hours. HRLL MCSs also formed during evening hours while HRHL MCSs could occur at any time of a day. A composite analysis of environmental conditions shows obvious differences and similarities among the HRHL, HRLL, and LRLL categories, while the LRHL MCSs exhibited little differences from the climatological mean because of its small sample size. Both the HRHL and HRLL MCSs occurred in the presence of upper-level anomalous divergence, a midlevel trough, and the lower-tropospheric southwesterly transport of tropical moist air. In contrast, LRLL MCSs took place as a result of daytime heating over mountainous regions, with little midlevel forcing over NC. The HRHL, HRLL, LRHL, and LRLL categories exhibited orders of the highest-to-smallest convective available potential energy and precipitable water but the smallest-to-largest convective inhibition and lifted indices. It is concluded that environmental conditions determine to some extent convective rainfall rates and CG lightning activity, although some other processes (e.g., cloud microphysics) also play certain roles, especially in CG lightning production.


2009 ◽  
Vol 34 (5) ◽  
pp. 285-292 ◽  
Author(s):  
S. M. Abdullaev ◽  
A. A. Zhelnin ◽  
O. Yu. Lenskaya

2012 ◽  
Vol 140 (2) ◽  
pp. 358-378 ◽  
Author(s):  
Benjamin J. Moore ◽  
Paul J. Neiman ◽  
F. Martin Ralph ◽  
Faye E. Barthold

A multiscale analysis is conducted in order to examine the physical processes that resulted in prolonged heavy rainfall and devastating flash flooding across western and central Tennessee and Kentucky on 1–2 May 2010, during which Nashville, Tennessee, received 344.7 mm of rainfall and incurred 11 flood-related fatalities. On the synoptic scale, heavy rainfall was supported by a persistent corridor of strong water vapor transport rooted in the tropics that was manifested as an atmospheric river (AR). This AR developed as water vapor was extracted from the eastern tropical Pacific and the Caribbean Sea and transported into the central Mississippi Valley by a strong southerly low-level jet (LLJ) positioned between a stationary lee trough along the eastern Mexico coast and a broad, stationary subtropical ridge positioned over the southeastern United States and the subtropical Atlantic. The AR, associated with substantial water vapor content and moderate convective available potential energy, supported the successive development of two quasi-stationary mesoscale convective systems (MCSs) on 1 and 2 May, respectively. These MCSs were both linearly organized and exhibited back-building and echo-training, processes that afforded the repeated movement of convective cells over the same area of western and central Tennessee and Kentucky, resulting in a narrow band of rainfall totals of 200–400 mm. Mesoscale analyses reveal that the MCSs developed on the warm side of a slow-moving cold front and that the interaction between the southerly LLJ and convectively generated outflow boundaries was fundamental for generating convection.


2020 ◽  
Vol 12 (14) ◽  
pp. 2307
Author(s):  
Dandan Chen ◽  
Jianping Guo ◽  
Dan Yao ◽  
Zhe Feng ◽  
Yanluan Lin

The life cycle of mesoscale convective systems (MCSs) in eastern China is yet to be fully understood, mainly due to the lack of observations of high spatio-temporal resolution and objective methods. Here, we quantitatively analyze the properties of warm-season (from April to September of 2016) MCSs during their lifetimes using the Himawari-8 geostationary satellite, combined with ground-based radars and gauge measurements. Generally, the occurrence of satellite derived MCSs has a noon peak over the land and an early morning peak over the ocean, which is several hours earlier than the precipitation peak. The developing and dissipative stages are significantly longer as total durations of MCSs increase. Aided by three-dimensional radar mosaics, we find the fraction of convective cores over northern China is much lower when compared with those in central United States, indicating that the precipitation produced by broad stratiform clouds may be more important for northern China. When there exists a large amount of stratiform precipitation, it releases a large amount of latent heat and promotes the large-scale circulations, which favors the maintenance of MCSs. These findings provide quantitative results about the life cycle of warm-season MCSs in eastern China based on multiple data sources and large numbers of samples.


2016 ◽  
Vol 29 (9) ◽  
pp. 3353-3371 ◽  
Author(s):  
Dominique Bouniol ◽  
Rémy Roca ◽  
Thomas Fiolleau ◽  
D. Emmanuel Poan

Abstract Mesoscale convective systems (MCSs) are important drivers of the atmospheric large-scale circulation through their associated diabatic heating profile. Taking advantage of recent tracking techniques, this study investigates the evolution of macrophysical, microphysical, and radiative properties over the MCS life cycle by merging geostationary and polar-orbiting satellite data. These observations are performed in three major convective areas: continental West Africa, the adjacent Atlantic Ocean, and the open Indian Ocean. MCS properties are also investigated according to internal subregions (convective, stratiform, and nonprecipitating anvil). Continental MCSs show a specific life cycle, with more intense convection at the beginning. Larger and denser hydrometeors are thus found at higher altitudes, as well as up to the cirriform subregion. Oceanic MCSs have more constant reflectivity values, suggesting a less intense convective updraft, but more persistent intensity. A layer of small crystals is found in all subregions, but with a depth that varies according to the MCS subregion and life cycle. Radiative properties are also examined. It appears that the evolution of large and dense hydrometeors tends to control the evolution of the cloud albedo and the outgoing longwave radiation. The impact of dense hydrometeors, detrained from the convective towers, is also seen in the radiative heating profiles, in particular in the shortwave domain. A dipole of cooling near the cloud top and heating near the cloud base is found in the longwave; this cooling intensifies near the end of the life cycle.


2015 ◽  
Vol 28 (12) ◽  
pp. 4890-4907 ◽  
Author(s):  
Xiangrong Yang ◽  
Jianfang Fei ◽  
Xiaogang Huang ◽  
Xiaoping Cheng ◽  
Leila M. V. Carvalho ◽  
...  

Abstract This study investigates mesoscale convective systems (MCSs) over China and its vicinity during the boreal warm season (May–August) from 2005 to 2012 based on data from the geostationary satellite Fengyun 2 (FY2) series. The authors classified and analyzed the quasi-circular and elongated MCSs on both large and small scales, including mesoscale convective complexes (MCCs), persistent elongated convective systems (PECSs), meso-β circular convective systems (MβCCSs), meso-β elongated convective system (MβECSs), and two additional types named small meso-β circular convective systems (SMβCCSs) and small meso-β elongated convective systems (SMβECSs). Results show that nearly 80% of the 8696 MCSs identified in this study fall into the elongated categories. Overall, MCSs occur mainly at three zonal bands with average latitudes around 20°, 30°, and 50°N. The frequency of MCSs occurrences is maximized at the zonal band around 20°N and decreases with increase in latitude. During the eight warm seasons, the period of peak systems occurrences is in July, followed decreasingly by June, August, and May. Meanwhile, from May to August three kinds of monthly variations are observed, which are clear northward migration, rapid increase, and persistent high frequency of MCS occurrences. Compared to MCSs in the United States, the four types of MCSs (MCCs, PECSs, MβCCSs, and MβECSs) are relatively smaller both in size and eccentricity but exhibit nearly equal life spans. Moreover, MCSs in both countries share similar positive correlations between their duration and maximum extent. Additionally, the diurnal cycles of MCSs in both countries are similar (local time) regarding the three stages of initiation, maturation, and termination.


2017 ◽  
Vol 30 (11) ◽  
pp. 4283-4298 ◽  
Author(s):  
R. Roca ◽  
T. Fiolleau ◽  
D. Bouniol

Abstract Mesoscale convective systems (MCSs) are important to the water and energy budget of the tropical climate and are essential ingredients of the tropical circulation. MCSs are readily observed in satellite infrared geostationary imagery as cloud clusters that evolve in time from small structures to well-organized large patches of cloud shield before dissipating. The MCS cloud shield is the result of a large ensemble of mesoscale dynamical, thermodynamical, and microphysical processes. This study shows that a simple parametric model can summarize the time evolution of the morphological characteristics of the cloud shield during the life cycle of the MCS. It consists of a growth–decay linear model of the cloud shield and is based on three parameters: the time of maximum extent, the maximum extent, and the duration of the MCS. It is shown that the time of maximum is frequently close to the middle of the life cycle and that the correlation between maximum extent and duration is strong all over the tropics. This suggests that 1 degree of freedom is left to summarize the life cycle of the MCS cloud shield. Such a model fits the observed MCS equally well, independent of the duration, size, location, and propagation characteristics, and its relevance is assessed for a large number of MCSs over three boreal summer periods over the whole tropical belt. The scaling of this simple model exhibits weak (strong) regional variability for the short- (long-) lived systems indicative of the primary importance of the internal dynamics of the systems to the large-scale environment for MCS sustainability.


Sign in / Sign up

Export Citation Format

Share Document