scholarly journals A Modified Framework for Quantifying Land–Atmosphere Covariability during Hydrometeorological and Soil Wetness Extremes in Oklahoma

2019 ◽  
Vol 58 (7) ◽  
pp. 1465-1483 ◽  
Author(s):  
Ryann A. Wakefield ◽  
Jeffrey B. Basara ◽  
Jason C. Furtado ◽  
Bradley G. Illston ◽  
Craig. R. Ferguson ◽  
...  

AbstractGlobal “hot spots” for land–atmosphere coupling have been identified through various modeling studies—both local and global in scope. One hot spot that is common to many of these analyses is the U.S. southern Great Plains (SGP). In this study, we perform a mesoscale analysis, enabled by the Oklahoma Mesonet, that bridges the spatial and temporal gaps between preceding local and global analyses of coupling. We focus primarily on east–west variations in seasonal coupling in the context of interannual variability over the period spanning 2000–15. Using North American Regional Reanalysis (NARR)-derived standardized anomalies of convective triggering potential (CTP) and the low-level humidity index (HI), we investigate changes in the covariance of soil moisture and the atmospheric low-level thermodynamic profile during seasonal hydrometeorological extremes. Daily CTP and HI z scores, dependent upon climatology at individual NARR grid points, were computed and compared to in situ soil moisture observations at the nearest mesonet station to provide nearly collocated annual composites over dry and wet soils. Extreme dry and wet year CTP and HI z-score distributions are shown to deviate significantly from climatology and therefore may constitute atmospheric precursors to extreme events. The most extreme rainfall years differ from climatology but also from one another, indicating variability in the strength of land–atmosphere coupling during these years. Overall, the covariance between soil moisture and CTP/HI is much greater during drought years, and coupling appears more consistent. For example, propagation of drought during 2011 occurred under antecedent CTP and HI conditions that were identified by this study as being conducive to positive dry feedbacks demonstrating potential utility of this framework in forecasting regional drought propagation.

2015 ◽  
Vol 28 (14) ◽  
pp. 5813-5829 ◽  
Author(s):  
Joseph A. Santanello ◽  
Joshua Roundy ◽  
Paul A. Dirmeyer

Abstract The coupling of the land with the planetary boundary layer (PBL) on diurnal time scales is critical to regulating the strength of the connection between soil moisture and precipitation. To improve understanding of land–atmosphere (L–A) interactions, recent studies have focused on the development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, the authors apply a suite of local land–atmosphere coupling (LoCo) metrics to modern reanalysis (RA) products and observations during a 17-yr period over the U.S. southern Great Plains. Specifically, a range of diagnostics exploring the links between soil moisture, evaporation, PBL height, temperature, humidity, and precipitation is applied to the summertime monthly mean diurnal cycles of the North American Regional Reanalysis (NARR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR). Results show that CFSR is the driest and MERRA the wettest of the three RAs in terms of overall surface–PBL coupling. When compared against observations, CFSR has a significant dry bias that impacts all components of the land–PBL system. CFSR and NARR are more similar in terms of PBL dynamics and response to dry and wet extremes, while MERRA is more constrained in terms of evaporation and PBL variability. Each RA has a unique land–PBL coupling that has implications for downstream impacts on the diurnal cycle of PBL evolution, clouds, convection, and precipitation as well as representation of extremes and drought. As a result, caution should be used when treating RAs as truth in terms of their water and energy cycle processes.


2015 ◽  
Vol 28 (17) ◽  
pp. 6682-6706 ◽  
Author(s):  
Larry K. Berg ◽  
Laura D. Riihimaki ◽  
Yun Qian ◽  
Huiping Yan ◽  
Maoyi Huang

Abstract This study utilizes six commonly used reanalysis products, including the NCEP–Department of Energy Reanalysis 2 (NCEP2), NCEP Climate Forecast System Reanalysis (CFSR), ECMWF interim reanalysis (ERA-Interim), Japanese 25-year Reanalysis Project (JRA-25), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and North American Regional Reanalysis (NARR), to evaluate features of the southern Great Plains low-level jet (LLJ) above the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) Southern Great Plains site. Two sets of radiosonde data are utilized: the six-week Midlatitude Continental Convective Clouds Experiment (MC3E) and a 10-yr period spanning 2001 through 2010. All six reanalyses are compared to MC3E data, while only the NARR, MERRA, and CFSR are compared to the 10-yr data. The reanalyses are able to represent most aspects of the composite LLJ profile, although there is a tendency for each reanalysis to overestimate the wind speed between the nose of the LLJ (at approximately 900 mb) and a pressure level of 700 mb. There are large discrepancies in the number of LLJs observed and derived from the reanalysis, particularly for strong LLJs, leading to an underestimate of the moisture transport associated with LLJs. When the 10-yr period is considered, the NARR and CFSR overestimate and MERRA underestimates the total moisture transport, but all three underestimate the transport associated with strong LLJs by factors of 1.4, 2.0, and 2.7 for CFSR, NARR, and MERRA, respectively. During MC3E there were differences in the patterns of moisture convergence and divergence, but the patterns are more consistent during the 10-yr period.


2010 ◽  
Vol 49 (4) ◽  
pp. 775-791 ◽  
Author(s):  
John D. Frye ◽  
Thomas L. Mote

Abstract Changes in low-level moisture alter the convective parameters [e.g., convective available potential energy (CAPE), lifted index (LI), and convective inhibition (CIN)] as a result of alterations in the latent and sensible heat energy exchange. Two sources for low-level moisture exist in the southern Great Plains: 1) moisture advection by the low-level jet (LLJ) from the Gulf of Mexico and 2) evaporation and transpiration from the soils and vegetation in the region. The primary focus of this study is to examine the spatial distribution of soil moisture on a daily basis and to determine the effect it has on the convective parameters. The secondary objective is to investigate how the relationship between soil moisture and convective parameters is altered by the presence of an LLJ. The soil moisture data were obtained through newly developed procedures and advances in technology aboard the Tropical Rainfall Measuring Mission Microwave Imager. The convective parameter data were obtained through the North American Regional Reanalysis dataset. The study examined seven warm seasons (April–September) from 1998 to 2004 and found that the convective environment is more unstable (CAPE > 900 J kg−1, LI < −2°C) but more strongly capped (CIN > 70 J kg−1) on days with an LLJ present. Spearman’s rank correlation analysis showed a less stable atmosphere with increased soil moisture, after soil moisture reached 5%, on most days. Additional analysis determined that on all synoptic-type days the probability of reaching various thresholds of convective intensity increased as soil moisture values increased. The probabilities were even greater on days with an LLJ present than on the days without an LLJ present. An examination of four days representing each synoptic-type day indicates that on the daily scale the intensity of the convective environment is closely related to the high soil moisture and the presence of an LLJ.


2020 ◽  
Vol 148 (11) ◽  
pp. 4607-4627
Author(s):  
Craig R. Ferguson ◽  
Shubhi Agrawal ◽  
Mark C. Beauharnois ◽  
Geng Xia ◽  
D. Alex Burrows ◽  
...  

AbstractIn the context of forecasting societally impactful Great Plains low-level jets (GPLLJs), the potential added value of satellite soil moisture (SM) data assimilation (DA) is high. GPLLJs are both sensitive to regional soil moisture gradients and frequent drivers of severe weather, including mesoscale convective systems. An untested hypothesis is that SM DA is more effective in forecasts of weakly synoptically forced, or uncoupled GPLLJs, than in forecasts of cyclone-induced coupled GPLLJs. Using the NASA Unified Weather Research and Forecasting (NU-WRF) Model, 75 GPLLJs are simulated at 9-km resolution both with and without NASA Soil Moisture Active Passive SM DA. Differences in modeled SM, surface sensible (SH) and latent heat (LH) fluxes, 2-m temperature (T2), 2-m humidity (Q2), PBL height (PBLH), and 850-hPa wind speed (W850) are quantified for individual jets and jet-type event subsets over the south-central Great Plains, as well as separately for each GPLLJ sector (entrance, core, and exit). At the GPLLJ core, DA-related changes of up to 5.4 kg m−2 in SM can result in T2, Q2, LH, SH, PBLH, and W850 differences of 0.68°C, 0.71 g kg−2, 59.9 W m−2, 52.4 W m−2, 240 m, and 4 m s−1, respectively. W850 differences focus along the jet axis and tend to increase from south to north. Jet-type differences are most evident at the GPLLJ exit where DA increases and decreases W850 in uncoupled and coupled GPLLJs, respectively. Data assimilation marginally reduces negative wind speed bias for all jets, but the correction is greater for uncoupled GPLLJs, as hypothesized.


2019 ◽  
Vol 20 (4) ◽  
pp. 751-771 ◽  
Author(s):  
Richard Seager ◽  
Jennifer Nakamura ◽  
Mingfang Ting

AbstractMechanisms of drought onset and termination are examined across North America with a focus on the southern Plains using data from land surface models and regional and global reanalyses for 1979–2017. Continental-scale analysis of covarying patterns reveals a tight coupling between soil moisture change over time and intervening precipitation anomalies. The southern Great Plains are a geographic center of patterns of hydrologic change. Drying is induced by atmospheric wave trains that span the Pacific and North America and place northerly flow anomalies above the southern Plains. In the southern Plains winter is least likely, and fall most likely, for drought onset and spring is least likely, and fall or summer most likely, for drought termination. Southern Plains soil moisture itself, which integrates precipitation over time, has a clear relationship to tropical Pacific sea surface temperature (SST) anomalies with cold conditions favoring dry soils. Soil moisture change, however, though clearly driven by precipitation, has a weaker relation to SSTs and a strong relation to internal atmospheric variability. Little evidence is found of connection of drought onset and termination to driving by temperature anomalies. An analysis of particular drought onsets and terminations on the seasonal time scale reveals commonalities in terms of circulation and moisture transport anomalies over the southern Plains but a variety of ways in which these are connected into the large-scale atmosphere and ocean state. Some onsets are likely to be quite predictable due to forcing by cold tropical Pacific SSTs (e.g., fall 2010). Other onsets and all terminations are likely not predictable in terms of ocean conditions.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1243 ◽  
Author(s):  
R. Ansley ◽  
Tian Zhang ◽  
Caitlyn Cooper

Honey mesquite (Prosopis glandulosa) is an invasive native woody plant in the southern Great Plains, USA. Treatments used to slow the invasion rate have either killed the plant (“root-kill”) or killed above-ground tissue (“top-kill”). Top-killing provides temporary suppression, but stimulates multi-stemmed regrowth. This study from north central Texas quantified soil moisture, grass production and mesquite resprout architecture following a mechanical clearing treatment that top-killed mesquite (cleared) compared to untreated mesquite woodland (woodland) over a 10-year period. During an extreme drought at 5 and 6 years post-clearing, soil moisture at 60-cm depth became lower in cleared than in woodland, suggesting that, as early as 5 years after top-kill, water use by regrowth mesquite could be greater than that by woodland mesquite. Perennial grass production was greater in cleared treatments than in woodland treatments in all years except the extreme drought years. Mesquite regrowth biomass increased numerically each year and was independent of annual precipitation with one exception. During the year 5 and 6 drought, mesquite stopped lateral expansion of larger stems and increased growth of smaller stems and twigs. In summary, top-killing mesquite generated short-term benefits of increased grass production, but regrowth created potentially negative consequences related to soil moisture.


Sign in / Sign up

Export Citation Format

Share Document