scholarly journals Deep-Learning-Based Gridded Downscaling of Surface Meteorological Variables in Complex Terrain. Part II: Daily Precipitation

2020 ◽  
Vol 59 (12) ◽  
pp. 2075-2092
Author(s):  
Yingkai Sha ◽  
David John Gagne II ◽  
Gregory West ◽  
Roland Stull

AbstractStatistical downscaling (SD) derives localized information from larger-scale numerical models. Convolutional neural networks (CNNs) have learning and generalization abilities that can enhance the downscaling of gridded data (Part I of this study experimented with 2-m temperature). In this research, we adapt a semantic-segmentation CNN, called UNet, to the downscaling of daily precipitation in western North America, from the low resolution (LR) of 0.25° to the high resolution (HR) of 4-km grid spacings. We select LR precipitation, HR precipitation climatology, and elevation as inputs; train UNet over the subset of the south- and central-western United States using Parameter–Elevation Regressions on Independent Slopes Model (PRISM) data from 2015 to 2018, and test it independently in all available domains from 2018 to 2019. We proposed an improved version of UNet, which we call Nest-UNet, by adding deep-layer aggregation and nested skip connections. Both the original UNet and Nest-UNet show generalization ability across different regions and outperform the SD baseline (bias-correction spatial disaggregation), with lower downscaling error and more accurate fine-grained textures. Nest-UNet also shares the highest amount of information with station observations and PRISM, indicating good ability to reduce the uncertainty of HR downscaling targets.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
H. Kim ◽  
Y. G. Ham ◽  
Y. S. Joo ◽  
S. W. Son

AbstractProducing accurate weather prediction beyond two weeks is an urgent challenge due to its ever-increasing socioeconomic value. The Madden-Julian Oscillation (MJO), a planetary-scale tropical convective system, serves as a primary source of global subseasonal (i.e., targeting three to four weeks) predictability. During the past decades, operational forecasting systems have improved substantially, while the MJO prediction skill has not yet reached its potential predictability, partly due to the systematic errors caused by imperfect numerical models. Here, to improve the MJO prediction skill, we blend the state-of-the-art dynamical forecasts and observations with a Deep Learning bias correction method. With Deep Learning bias correction, multi-model forecast errors in MJO amplitude and phase averaged over four weeks are significantly reduced by about 90% and 77%, respectively. Most models show the greatest improvement for MJO events starting from the Indian Ocean and crossing the Maritime Continent.


2021 ◽  
Vol 13 (16) ◽  
pp. 3065
Author(s):  
Libo Wang ◽  
Rui Li ◽  
Dongzhi Wang ◽  
Chenxi Duan ◽  
Teng Wang ◽  
...  

Semantic segmentation from very fine resolution (VFR) urban scene images plays a significant role in several application scenarios including autonomous driving, land cover classification, urban planning, etc. However, the tremendous details contained in the VFR image, especially the considerable variations in scale and appearance of objects, severely limit the potential of the existing deep learning approaches. Addressing such issues represents a promising research field in the remote sensing community, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose a Bilateral Awareness Network which contains a dependency path and a texture path to fully capture the long-range relationships and fine-grained details in VFR images. Specifically, the dependency path is conducted based on the ResT, a novel Transformer backbone with memory-efficient multi-head self-attention, while the texture path is built on the stacked convolution operation. In addition, using the linear attention mechanism, a feature aggregation module is designed to effectively fuse the dependency features and texture features. Extensive experiments conducted on the three large-scale urban scene image segmentation datasets, i.e., ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset, demonstrate the effectiveness of our BANet. Specifically, a 64.6% mIoU is achieved on the UAVid dataset.


2013 ◽  
Vol 17 (6) ◽  
pp. 2147-2159 ◽  
Author(s):  
E. P. Maurer ◽  
T. Das ◽  
D. R. Cayan

Abstract. When correcting for biases in general circulation model (GCM) output, for example when statistically downscaling for regional and local impacts studies, a common assumption is that the GCM biases can be characterized by comparing model simulations and observations for a historical period. We demonstrate some complications in this assumption, with GCM biases varying between mean and extreme values and for different sets of historical years. Daily precipitation and maximum and minimum temperature from late 20th century simulations by four GCMs over the United States were compared to gridded observations. Using random years from the historical record we select a "base" set and a 10 yr independent "projected" set. We compare differences in biases between these sets at median and extreme percentiles. On average a base set with as few as 4 randomly-selected years is often adequate to characterize the biases in daily GCM precipitation and temperature, at both median and extreme values; 12 yr provided higher confidence that bias correction would be successful. This suggests that some of the GCM bias is time invariant. When characterizing bias with a set of consecutive years, the set must be long enough to accommodate regional low frequency variability, since the bias also exhibits this variability. Newer climate models included in the Intergovernmental Panel on Climate Change fifth assessment will allow extending this study for a longer observational period and to finer scales.


2013 ◽  
Vol 17 (11) ◽  
pp. 4481-4502 ◽  
Author(s):  
S. Hwang ◽  
W. D. Graham

Abstract. There are a number of statistical techniques that downscale coarse climate information from general circulation models (GCMs). However, many of them do not reproduce the small-scale spatial variability of precipitation exhibited by the observed meteorological data, which is an important factor for predicting hydrologic response to climatic forcing. In this study a new downscaling technique (Bias-Correction and Stochastic Analog method; BCSA) was developed to produce stochastic realizations of bias-corrected daily GCM precipitation fields that preserve both the spatial autocorrelation structure of observed daily precipitation sequences and the observed temporal frequency distribution of daily rainfall over space. We used the BCSA method to downscale 4 different daily GCM precipitation predictions from 1961 to 1999 over the state of Florida, and compared the skill of the method to results obtained with the commonly used bias-correction and spatial disaggregation (BCSD) approach, a modified version of BCSD which reverses the order of spatial disaggregation and bias-correction (SDBC), and the bias-correction and constructed analog (BCCA) method. Spatial and temporal statistics, transition probabilities, wet/dry spell lengths, spatial correlation indices, and variograms for wet (June through September) and dry (October through May) seasons were calculated for each method. Results showed that (1) BCCA underestimated mean daily precipitation for both wet and dry seasons while the BCSD, SDBC and BCSA methods accurately reproduced these characteristics, (2) the BCSD and BCCA methods underestimated temporal variability of daily precipitation and thus did not reproduce daily precipitation standard deviations, transition probabilities or wet/dry spell lengths as well as the SDBC and BCSA methods, and (3) the BCSD, BCCA and SDBC methods underestimated spatial variability in daily precipitation resulting in underprediction of spatial variance and overprediction of spatial correlation, whereas the new stochastic technique (BCSA) replicated observed spatial statistics for both the wet and dry seasons. This study underscores the need to carefully select a downscaling method that reproduces all precipitation characteristics important for the hydrologic system under consideration if local hydrologic impacts of climate variability and change are going to be reasonably predicted. For low-relief, rainfall-dominated watersheds, where reproducing small-scale spatiotemporal precipitation variability is important, the BCSA method is recommended for use over the BCSD, BCCA, or SDBC methods.


2021 ◽  
Vol 48 (7) ◽  
Author(s):  
Fangyue Zhang ◽  
Joel A. Biederman ◽  
Matthew P. Dannenberg ◽  
Dong Yan ◽  
Sasha C. Reed ◽  
...  

2018 ◽  
Vol 31 (16) ◽  
pp. 6591-6610 ◽  
Author(s):  
Martin Aleksandrov Ivanov ◽  
Jürg Luterbacher ◽  
Sven Kotlarski

Climate change impact research and risk assessment require accurate estimates of the climate change signal (CCS). Raw climate model data include systematic biases that affect the CCS of high-impact variables such as daily precipitation and wind speed. This paper presents a novel, general, and extensible analytical theory of the effect of these biases on the CCS of the distribution mean and quantiles. The theory reveals that misrepresented model intensities and probability of nonzero (positive) events have the potential to distort raw model CCS estimates. We test the analytical description in a challenging application of bias correction and downscaling to daily precipitation over alpine terrain, where the output of 15 regional climate models (RCMs) is reduced to local weather stations. The theoretically predicted CCS modification well approximates the modification by the bias correction method, even for the station–RCM combinations with the largest absolute modifications. These results demonstrate that the CCS modification by bias correction is a direct consequence of removing model biases. Therefore, provided that application of intensity-dependent bias correction is scientifically appropriate, the CCS modification should be a desirable effect. The analytical theory can be used as a tool to 1) detect model biases with high potential to distort the CCS and 2) efficiently generate novel, improved CCS datasets. The latter are highly relevant for the development of appropriate climate change adaptation, mitigation, and resilience strategies. Future research needs to focus on developing process-based bias corrections that depend on simulated intensities rather than preserving the raw model CCS.


2019 ◽  
Vol 20 (4) ◽  
pp. 595-611 ◽  
Author(s):  
Rajib Maity ◽  
Mayank Suman ◽  
Patrick Laux ◽  
Harald Kunstmann

Abstract Changes in extreme precipitation due to climate change often require the application of methods to bias correct simulated atmospheric fields, including extremes. Most existing bias correction techniques (i) only focus on the bias in the mean value or on the extreme values separately, and (ii) exclude zero values from analysis, even though their presence is significant in daily precipitation. We developed a copula-based bias correction scheme that is suitable for zero-inflated daily precipitation data to correct the bias in mean as well as in extreme precipitation at any specific statistical quantile. In considering the whole of Germany as a test bed, the proposed scheme is found to work well across the entire study area, including the German Alpine regions. The joint distribution between observed and regional climate model (RCM)-derived precipitation is developed through copulas. In particular, the joint distribution is modified to make it discrete at zero in order to account for zero values. The benefit of considering zero precipitation values is revealed through the improved performance of bias correction both in the mean and extreme values. Second, the quantile that best captures the bias (whether in the mean or any extreme value) is determined for a specific location and varies spatially and seasonally. This relaxation in selecting the location-specific optimal quantile renders the proposed methodology spatially transferable. By acknowledging possible changes in extreme precipitation due to climate change, the proposed scheme is expected to be suitable for climate change impact assessments for extreme events worldwide.


2016 ◽  
Vol 283 (1841) ◽  
pp. 20161762 ◽  
Author(s):  
Emily E. Puckett ◽  
Jane Park ◽  
Matthew Combs ◽  
Michael J. Blum ◽  
Juliet E. Bryant ◽  
...  

Native to China and Mongolia, the brown rat ( Rattus norvegicus ) now enjoys a worldwide distribution. While black rats and the house mouse tracked the regional development of human agricultural settlements, brown rats did not appear in Europe until the 1500s, suggesting their range expansion was a response to relatively recent increases in global trade. We inferred the global phylogeography of brown rats using 32 k SNPs, and detected 13 evolutionary clusters within five expansion routes. One cluster arose following a southward expansion into Southeast Asia. Three additional clusters arose from two independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a second to western North America. Westward expansion resulted in the colonization of Europe from which subsequent rapid colonization of Africa, the Americas and Australasia occurred, and multiple evolutionary clusters were detected. An astonishing degree of fine-grained clustering between and within sampling sites underscored the extent to which urban heterogeneity shaped genetic structure of commensal rodents. Surprisingly, few individuals were recent migrants, suggesting that recruitment into established populations is limited. Understanding the global population structure of R. norvegicus offers novel perspectives on the forces driving the spread of zoonotic disease, and aids in development of rat eradication programmes.


Sign in / Sign up

Export Citation Format

Share Document