scholarly journals Trends of Aerosol Optical Properties over the Heavy Industrial Zone of Northeastern Asia in the Past Decade (2004–15)

2018 ◽  
Vol 75 (6) ◽  
pp. 1741-1754 ◽  
Author(s):  
Dandan Zhao ◽  
Jinyuan Xin ◽  
Chongshui Gong ◽  
Xin Wang ◽  
Yongjing Ma ◽  
...  

The heavy industrial zone of northeastern Asia is dominated by year-round industrial scattering aerosols that undergo hygroscopic growth in summer. With the rapid economic development over the past decade, aerosol optical depth (AOD) has increased (6.35% yr−1) with an annual-mean AOD of 0.61 ± 0.13. Simultaneously, the aerosol particle size and aerosol scattering have increased, with an annual-mean scattering aerosol optical depth (SAOD) reaching 0.58 ± 0.15. However, considering that the annual AOD/gross domestic product (GDP) per capita decreased, the environmental degradation caused by aerosol emission is expected to reach a turning point based on the environmental Kuznets curve (EKC) hypothesis. In addition, annual-mean radiative forcing at the top, bottom, and interior of the atmospheric column reached −2.35 ± 2.33, −54.16 ± 7.26, and 51.81 ± 7.93 W m−2, respectively. The increase in unit SAOD contributes to the growth in net negative top-of-atmosphere (TOA) forcing and surface (SFC) forcing, and unit absorption aerosol optical depth (AAOD) increases together with atmosphere (ATM) forcing. Moreover, the cooling effect of aerosols on the Earth–atmosphere system showed an increase over the most recent 10 years related to the increase in scattering aerosol from development in the old industrial base. Except for local sources, under the western air masses, the circum–Bohai Sea economic zone was the potential source area of anthropogenic aerosols throughout the year with annual daily mean AOD, single-scattering albedo (SSA), TOA forcing, and SFC forcing values of 0.88, 0.93, −8.08, and −63.05 W m−2, respectively. The Mongolian Plateau was the potential natural dust source area under the northeastern air masses.

2021 ◽  
Vol 21 (8) ◽  
pp. 5965-5982
Author(s):  
Mingxu Liu ◽  
Hitoshi Matsui

Abstract. Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China have resulted in substantial reductions of anthropogenic emissions of sulfur dioxide (SO2) and primary particulate matter, and air quality in China has consequently improved. However, the resultant aerosol radiative forcings have been poorly understood. In this study, we used an advanced global climate model integrated with the latest localized emission inventory to quantify the aerosol radiative forcings by the changes of anthropogenic emissions in China between 2008 and 2016. By comparing with multiple observation datasets, our simulations reproduced the considerable reductions of sulfate and black carbon (BC) mass loadings reasonably well over eastern China (the key region subject to stringent emission controls) during the period and accordingly showed a clear decline in both aerosol optical depth and absorption aerosol optical depth. The results revealed a regional annual mean positive direct radiative forcing (DRF) of +0.29 W m−2 at the top of the atmosphere (TOA) due to the reduction of SO2 emissions. This positive aerosol radiative forcing was comprised of diminished sulfate scattering (+0.58 W m−2), enhanced nitrate radiative effects (−0.29 W m−2), and could be completely offset by the concurrent reduction of BC emissions that induced a negative BC DRF of −0.33 W m−2. Despite the small net aerosol DRF (−0.05 W m−2) at the TOA, aerosol–radiation interactions could explain the surface brightening in China over the past decade. The overall reductions in aerosol burdens and associated optical effects mainly from BC and sulfate enhanced the regional annual mean downward solar radiation flux at the surface by +1.0 W m−2 between 2008 and 2016. The enhancement was in general agreement with a long-term observational record of surface energy fluxes in China. We also estimated that aerosol effects on cloud radiative forcings may have played a dominant role in the net aerosol radiative forcings at the TOA in China and over the northern Pacific Ocean during the study period. This study will facilitate more informed assessment of climate responses to projected emissions in the future as well as to sudden changes in human activities (e.g., the COVID-19 lockdown).


2015 ◽  
Vol 15 (9) ◽  
pp. 13457-13513 ◽  
Author(s):  
S. T. Turnock ◽  
D. V. Spracklen ◽  
K. S. Carslaw ◽  
G. W. Mann ◽  
M. T. Woodhouse ◽  
...  

Abstract. Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry climate models. Here we compare the HadGEM3-UKCA coupled chemistry-climate model for the period 1960 to 2009 against extensive ground based observations of sulfate aerosol mass (1978–2009), total suspended particle matter (SPM, 1978–1998), PM10 (1997–2009), aerosol optical depth (AOD, 2000–2009) and surface solar radiation (SSR, 1960–2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = −0.4), SPM (NMBF = −0.9), PM10 (NMBF = −0.2) and aerosol optical depth (AOD, NMBF = −0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of −68% (−78%), SPM of −42% (−20%), PM10 of −9% (−8%) and AOD of −11% (−14%). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5%) during 1990–2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3%), compared to simulations where ARE are excluded (0.2%). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by 3 W m−2 during the period 1970–2009 in response to changes in anthropogenic emissions and aerosol concentrations.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-14
Author(s):  
Monim Jiboori ◽  
Nadia Abed ◽  
Mohamed Abdel Wahab

2007 ◽  
Vol 7 (8) ◽  
pp. 2091-2101 ◽  
Author(s):  
S. Kazadzis ◽  
A. Bais ◽  
V. Amiridis ◽  
D. Balis ◽  
C. Meleti ◽  
...  

Abstract. Spectral measurements of the aerosol optical depth (AOD) and the Ångström coefficient were conducted at Thessaloniki, Greece (40.5° N, 22.9° E) between January 1997 and December 2005 with a Brewer MKIII double-monochromator spectroradiometer. The dataset was compared with collocated measurements of a second spectroradiometer (Brewer MKII) and a CIMEL sun-photometer, showing correlations of 0.93 and 0.98, respectively. A seasonal variation of the AOD was observed at Thessaloniki, with AOD values at 340 nm of 0.52 and 0.28 for August and December respectively. Back trajectories of air masses for up to 4 days were used to assess the influence of long-range transport from various regions to the aerosol load over Thessaloniki. It is shown that part of the observed seasonality can be attributed to air masses with high AOD originating from North-Eastern and Eastern directions during summertime. The analysis of the long-term record (9 years) of AOD showed a downward tendency. A similar decreasing tendency was found in the record of the PM$_{10}$ aerosol measurements, which are conducted near the surface at 4 air-quality monitoring stations in the area of the city of Thessaloniki.


2022 ◽  
Author(s):  
Samuel E. LeBlanc ◽  
Michal Segal-Rozenhaimer ◽  
Jens Redemann ◽  
Connor J. Flynn ◽  
Roy R. Johnson ◽  
...  

Abstract. Aerosol particles can be emitted, transported, removed, or transformed, leading to aerosol variability at scales impacting the climate (days to years and over hundreds of kilometers) or the air quality (hours to days and from meters to hundreds of kilometers). We present the temporal and spatial scales of changes in AOD (Aerosol Optical Depth), and aerosol size (using Angstrom Exponent; AE, and Fine-Mode-Fraction; FMF) over Korea during the 2016 KORUS-AQ (KORea-US Air Quality) atmospheric experiment. We use measurements and retrievals of aerosol optical properties from airborne instruments for remote sensing (4STAR; Spectrometers for Sky-Scanning Sun Tracking Atmospheric Research) and in situ (LARGE; NASA Langley Aerosol Research Group Experiment) on board the NASA DC-8, geostationary satellite (GOCI; Geostationary Ocean Color Imager; Yonsei aerosol retrieval (YAER) version 2) and reanalysis (MERRA-2; Modern-Era Retrospective Analysis for Research and Applications, version 2). Measurements from 4STAR when flying below 500 m, show an average AOD at 501 nm of 0.43 and an average AE of 1.15 with large standard deviation (0.32 and 0.26 for AOD and AE respectively) likely due to mixing of different aerosol types (fine and coarse mode). The majority of AODs due to fine mode aerosol is observed at altitudes lower than 2 km. Even though there are large variations, for 18 out of the 20 flight days, the column AOD measurements by 4STAR along the NASA DC-8 flight trajectories matches the south-Korean regional average derived from GOCI. We also observed that, contrary to prevalent understanding, AE and FMF are more spatially variable than AOD during KORUS-AQ, even when accounting for potential sampling biases by using Monte Carlo resampling. Averaging between measurements and model for the entire KORUS-AQ period, a reduction in correlation by 15 % is 65.0 km for AOD and shorter at 22.7 km for AE. While there are observational and model differences, the predominant factor influencing spatial-temporal homogeneity is the meteorological period. High spatio-temporal variability occur during the dynamic period (25–31 May), and low spatio-temporal variability occur during blocking Rex pattern (01–07 June). The changes in spatial variability scales between AOD and FMF/AE, while inter-related, indicate that microphysical processes that impact mostly the dominant aerosol size, like aerosol particle formation, growth, and coagulation, vary at shorter scales than the aerosol concentration processes that mostly impact AOD, like aerosol emission, transport, and removal.


Author(s):  
G. I. Gorchakov ◽  
S. A. Sitnov ◽  
A. V. Karpov ◽  
I. A. Gorchakova ◽  
R. A. Gushchin ◽  
...  

Using maximum aerosol optical depth (MAOD) spatial distribution formation technique the optically dense haze expansion scales in period from 15 to 31 July 2016 over Eurasia are estimated in during great Siberian smoke haze (SSH) with the area 16 mln km2 about, smog over the Northern China Plain (2 mln km2), dust haze in Takla Makan desert (0.8 mln km2) and hazes in India and Pakistan (1 mln km2 approximately). Empirical distribution function (EDF) MAOD is received which is approximated by linear function of MAOD logarithm. Aerosol optical depth (AOD) spatial distribution at wavelength 550 nm in SSH is analyzed. Total smoke aerosol mass assessment in SSH (3.2 mln tons) is evaluated. Smoke aerosol (SA) mass during maximum growth period from 22 July to 26 July 2016 over Siberia (50°-70°, 60°-120 °E) was equal 2 mln tons approximately. Aerosol index (AI) temporal variability is illustrated visually SA composition qualitative change in SSH during long-range transport. It is shown that AI variations are correlated with AOD variations. Aerosol radiative forcing (ARF) at the top and the bottom of the atmosphere over Siberia from 22 July to 26 July 2016 is estimated (average ARF are equal –68 and –98 W/m2). EDF AOD and EDF ARF at the top of the atmosphere are approximated by exponential and power function of AOD correspondingly.


2014 ◽  
Vol 14 (23) ◽  
pp. 32177-32231 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.


2018 ◽  
Vol 10 (11) ◽  
pp. 1838 ◽  
Author(s):  
Yang Zhang ◽  
Zhengqiang Li ◽  
Zhihong Liu ◽  
Juan Zhang ◽  
Lili Qie ◽  
...  

The fine-mode aerosol optical depth (AODf) is an important parameter for the environment and climate change study, which mainly represents the anthropogenic aerosols component. The Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL) instrument can detect polarized signal from multi-angle observation and the polarized signal mainly comes from the radiation contribution of the fine-mode aerosols, which provides an opportunity to obtain AODf directly. However, the currently operational algorithm of Laboratoire d’Optique Atmosphérique (LOA) has a poor AODf retrieval accuracy over East China on high aerosol loading days. This study focused on solving this issue and proposed a grouped residual error sorting (GRES) method to determine the optimal aerosol model in AODf retrieval using the traditional look-up table (LUT) approach and then the AODf retrieval accuracy over East China was improved. The comparisons between the GRES retrieved and the Aerosol Robotic Network (AERONET) ground-based AODf at Beijing, Xianghe, Taihu and Hong_Kong_PolyU sites produced high correlation coefficients (r) of 0.900, 0.933, 0.957 and 0.968, respectively. The comparisons of the GRES retrieved AODf and PARASOL AODf product with those of the AERONET observations produced a mean absolute error (MAE) of 0.054 versus 0.104 on high aerosol loading days (AERONET mean AODf at 865 nm = 0.283). An application using the GRES method for total AOD (AODt) retrieval also showed a good expandability for multi-angle aerosol retrieval of this method.


2009 ◽  
Vol 66 (4) ◽  
pp. 1033-1040 ◽  
Author(s):  
O. E. García ◽  
A. M. Díaz ◽  
F. J. Expósito ◽  
J. P. Díaz ◽  
A. Redondas ◽  
...  

Abstract The influence of mineral dust on ultraviolet energy transfer is studied for two different mineralogical origins. The aerosol radiative forcing ΔF and the forcing efficiency at the surface ΔFeff in the range 290–325 nm were estimated in ground-based stations affected by the Saharan and Asian deserts during the dusty seasons. UVB solar measurements were taken from the World Ozone and Ultraviolet Data Center (WOUDC) for four Asian stations (2000–04) and from the Santa Cruz Observatory, Canary Islands (2002–03), under Gobi and Sahara Desert influences, respectively. The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth at 550 nm was used to characterize the aerosol load τ, whereas the aerosol index provided by the Total Ozone Mapping Spectrometer (TOMS) sensor was employed to identify the mineral dust events. The ΔF is strongly affected by the aerosol load, the values found being comparable in both regions during the dusty seasons. Under those conditions, ΔF values as large as −1.29 ± 0.53 W m−2 (τ550 = 0.48 ± 0.24) and −1.43 ± 0.38 W m−2 (τ550 = 0.54 ± 0.26) were reached under Saharan and Asian dust conditions, respectively. Nevertheless, significant differences have been observed in the aerosol radiative forcing per unit of aerosol optical depth in the slant path, τS. The maximum ΔFeff values associated with dust influences were −1.55 ± 0.20 W m−2 τS550−1 for the Saharan region and −0.95 ± 0.11 W m−2 τS550−1 in the Asian area. These results may be used as a benchmark database for establishing aerosol corrections in UV satellite products or in global climate model estimations.


Sign in / Sign up

Export Citation Format

Share Document