scholarly journals Transition from Geostrophic Flows to Inertia–Gravity Waves in the Spectrum of a Differentially Heated Rotating Annulus Experiment

2020 ◽  
Vol 77 (8) ◽  
pp. 2793-2806
Author(s):  
Costanza Rodda ◽  
Uwe Harlander

Abstract Inertia–gravity waves (IGWs) play an essential role in the terrestrial atmospheric dynamics as they can lead to energy and momentum flux when propagating upward. An open question is to what extent IGWs contribute to the total energy and to the flattening of the energy spectrum observed at the mesoscale. In this work, we present an experimental investigation of the energy distribution between the large-scale balanced flow and the small-scale imbalanced flow. Weakly nonlinear IGWs emitted from baroclinic jets are observed in the differentially heated rotating annulus experiment. Similar to the atmospheric spectra, the experimental kinetic energy spectra reveal the typical subdivision into two distinct regimes with slopes k−3 for the large scales and k−5/3 for the small scales. By separating the spectra into the vortex and wave components, it emerges that at the large-scale end of the mesoscale the gravity waves observed in the experiment cause a flattening of the spectra and provide most of the energy. At smaller scales, our data analysis suggests a transition toward a turbulent regime with a forward energy cascade up to where dissipation by diffusive processes occurs.

2020 ◽  
Author(s):  
Costanza Rodda ◽  
Uwe Harlander

<p>Inertia-gravity waves (IGWs) are known to play an essential role in the terrestrial atmospheric dynamics as they can lead to energy and momentum flux when they propagate upwards. An open question is to which extent nearly linear IGWs contribute to the total energy and to flattening of the energy spectrum observed at the mesoscale.<br>In this work, we present an experimental investigation of the energy distribution between the large-scale balanced flow and the small-scale imbalanced flow. Weakly nonlinear IGWs emitted from baroclinic jets are observed in the differentially heated rotating annulus experiment. Similar to the atmospheric spectra, the experimental kinetic energy spectra reveal the typical subdivision into two distinct regimes with slopes <em>k</em><sup>-3</sup> for the large scales and <em>k<sup>-</sup></em><sup>5/3</sup> for smaller scales. By separating the spectra into a vortex and wave part, it emerges that at the largest scales in the mesoscale range the gravity waves observed in the experiment cause a flattening of the spectra and provide most of the energy. At smaller scales, our data analysis suggests a transition towards a turbulent regime with a forward energy cascade up to where dissipation by diffusive processes occurs.</p>


2019 ◽  
Vol 875 ◽  
pp. 71-100 ◽  
Author(s):  
Jim Thomas ◽  
Ray Yamada

Recent evidence from both oceanic observations and global-scale ocean model simulations indicate the existence of regions where low-mode internal tidal energy dominates over that of the geostrophic balanced flow. Inspired by these findings, we examine the effect of the first vertical mode inertia–gravity waves on the dynamics of balanced flow using an idealized model obtained by truncating the hydrostatic Boussinesq equations on to the barotropic and the first baroclinic mode. On investigating the wave–balance turbulence phenomenology using freely evolving numerical simulations, we find that the waves continuously transfer energy to the balanced flow in regimes where the balanced-to-wave energy ratio is small, thereby generating small-scale features in the balanced fields. We examine the detailed energy transfer pathways in wave-dominated flows and thereby develop a generalized small Rossby number geophysical turbulence phenomenology, with the two-mode (barotropic and one baroclinic mode) quasi-geostrophic turbulence phenomenology being a subset of it. The present work therefore shows that inertia–gravity waves would form an integral part of the geophysical turbulence phenomenology in regions where balanced flow is weaker than gravity waves.


2009 ◽  
Vol 66 (5) ◽  
pp. 1315-1326 ◽  
Author(s):  
Michael E. McIntyre

Abstract After reviewing the background, this article discusses the recently discovered examples of hybrid propagating structures consisting of vortex dipoles and comoving gravity waves undergoing wave capture. It is shown how these examples fall outside the scope of the Lighthill theory of spontaneous imbalance and, concomitantly, outside the scope of shallow-water dynamics. Besides the fact that going from shallow-water to continuous stratification allows disparate vertical scales—small for inertia–gravity waves and large for vortical motion—the key points are 1) that by contrast with cases covered by the Lighthill theory, the wave source feels a substantial radiation reaction when Rossby numbers R ≳ 1, so that the source cannot be prescribed in advance; 2) that examples of this sort may supply exceptions to the general rule that spontaneous imbalance is exponentially small in R; and 3) that unsteady vortical motion in continuous stratification can stay close to balance thanks to three quite separate mechanisms. These are as follows: first, the near-suppression, by the Lighthill mechanism, of large-scale imbalance (inertia–gravity waves of large horizontal scale), where “large” means large relative to a Rossby deformation length LD characterizing the vortical motion; second, the flaccidity, and hence near-steadiness, of LD-wide jets that meander and form loops, Gulf-Stream-like, on streamwise scales ≫ LD; and third, the dissipation of small-scale imbalance by wave capture leading to wave breaking, which is generically probable in an environment of random shear and straining. Shallow-water models include the first two mechanisms but exclude the third.


2008 ◽  
Vol 65 (11) ◽  
pp. 3543-3556 ◽  
Author(s):  
Paul D. Williams ◽  
Thomas W. N. Haine ◽  
Peter L. Read

Abstract This paper describes laboratory observations of inertia–gravity waves emitted from balanced fluid flow. In a rotating two-layer annulus experiment, the wavelength of the inertia–gravity waves is very close to the deformation radius. Their amplitude varies linearly with Rossby number in the range 0.05–0.14, at constant Burger number (or rotational Froude number). This linear scaling challenges the notion, suggested by several dynamical theories, that inertia–gravity waves generated by balanced motion will be exponentially small. It is estimated that the balanced flow leaks roughly 1% of its energy each rotation period into the inertia–gravity waves at the peak of their generation. The findings of this study imply an inevitable emission of inertia–gravity waves at Rossby numbers similar to those of the large-scale atmospheric and oceanic flow. Extrapolation of the results suggests that inertia–gravity waves might make a significant contribution to the energy budgets of the atmosphere and ocean. In particular, emission of inertia–gravity waves from mesoscale eddies may be an important source of energy for deep interior mixing in the ocean.


2009 ◽  
Vol 66 (11) ◽  
pp. 3464-3478 ◽  
Author(s):  
Chris Snyder ◽  
Riwal Plougonven ◽  
David J. Muraki

Abstract Previous simulations of dipole vortices propagating through rotating, stratified fluid have revealed small-scale inertia–gravity waves that are embedded within the dipole near its leading edge and are approximately stationary relative to the dipole. The mechanism by which these waves are generated is investigated, beginning from the observation that the dipole can be reasonably approximated by a balanced quasigeostrophic (QG) solution. The deviations from the QG solution (including the waves) then satisfy linear equations that come from linearization of the governing equations about the QG dipole and are forced by the residual tendency of the QG dipole (i.e., the difference between the time tendency of the QG solution and that of the full primitive equations initialized with the QG fields). The waves do not appear to be generated by an instability of the balanced dipole, as homogeneous solutions of the linear equations amplify little over the time scale for which the linear equations are valid. Linear solutions forced by the residual tendency capture the scale, location, and pattern of the inertia–gravity waves, although they overpredict the wave amplitude by a factor of 2. There is thus strong evidence that the waves are generated as a forced linear response to the balanced flow. The relation to and differences from other theories for wave generation by balanced flows, including those of Lighthill and Ford et al., are discussed.


1992 ◽  
Vol 241 ◽  
pp. 443-467 ◽  
Author(s):  
A. Neish ◽  
F. T. Smith

The basic model problem of separation as predicted by the time-mean boundary-layer equations is studied, with the Cebeci-Smith model for turbulent stresses. The changes between laminar and turbulent flow are investigated by means of a turbulence ‘factor’ which increases from zero for laminar flow to unity for the fully turbulent regime. With an attached-flow starting point, a small increase in the turbulence factor above zero is found to drive the separation singularity towards the trailing edge or rear stagnation point for flow past a circular cylinder, according to both computations and analysis. A separated-flow starting point is found to produce analogous behaviour for the separation point. These findings lead to the suggestion that large-scale separation need not occur at all in the fully turbulent regime at sufficiently high Reynolds number; instead, separation is of small scale, confined near the trailing edge. Comments on the generality of this suggestion are presented, along with some supporting evidence from other computations. Further, the small scale involved theoretically has values which seem reasonable in practical terms.


Author(s):  
Jonathan Skipp ◽  
Sergey Nazarenko

Abstract We study the thermodynamic equilibrium spectra of the Charney- Hasegawa-Mima (CHM) equation in its weakly nonlinear limit. In this limit, the equation has three adiabatic invariants, in contrast to the two invariants of the 2D Euler or Gross-Pitaevskii equations, which are examples for comparison. We explore how the third invariant considerably enriches the variety of equilibrium spectra that the CHM system can access. In particular we characterise the singular limits of these spectra in which condensates occur, i.e. a single Fourier mode (or pair of modes) accumulate(s) a macroscopic fraction of the total invariants. We show that these equilibrium condensates provide a simple explanation for the characteristic structures observed in CHM systems of finite size: highly anisotropic zonal flows, large-scale isotropic vortices, and vortices at small scale. We show how these condensates are associated with combinations of negative thermodynamic potentials (e.g. temperature).


2010 ◽  
Vol 67 (8) ◽  
pp. 2504-2519 ◽  
Author(s):  
Daniel Ruprecht ◽  
Rupert Klein ◽  
Andrew J. Majda

Abstract Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic techniques. From the leading-order equations, a closed model for the large-scale flow is obtained analytically by applying horizontal averages conditioned on the small-scale hot towers. No closure approximations are required besides adopting the asymptotic limit regime on which the analysis is based. The resulting model is an extension of the anelastic equations linearized about a constant background flow. Moist processes enter through the area fraction of saturated regions and through two additional dynamic equations describing the coupled evolution of the conditionally averaged small-scale vertical velocity and buoyancy. A two-way coupling between the large-scale dynamics and these small-scale quantities is obtained: moisture reduces the effective stability for the large-scale flow, and microscale up- and downdrafts define a large-scale averaged potential temperature source term. In turn, large-scale vertical velocities induce small-scale potential temperature fluctuations due to the discrepancy in effective stability between saturated and nonsaturated regions. The dispersion relation and group velocity of the system are analyzed and moisture is found to have several effects: (i) it reduces vertical energy transport by waves, (ii) it increases vertical wavenumbers but decreases the slope at which wave packets travel, (iii) it introduces a new lower horizontal cutoff wavenumber in addition to the well-known high wavenumber cutoff, and (iv) moisture can cause critical layers. Numerical examples reveal the effects of moisture on steady-state and time-dependent mountain waves in the present hot-tower regime.


2007 ◽  
Vol 64 (3) ◽  
pp. 828-848 ◽  
Author(s):  
Armel Martin ◽  
François Lott

Abstract A heuristic model is used to study the synoptic response to mountain gravity waves (GWs) absorbed at directional critical levels. The model is a semigeostrophic version of the Eady model for baroclinic instability adapted by Smith to study lee cyclogenesis. The GWs exert a force on the large-scale flow where they encounter directional critical levels. This force is taken into account in the model herein and produces potential vorticity (PV) anomalies in the midtroposphere. First, the authors consider the case of an idealized mountain range such that the orographic variance is well separated between small- and large-scale contributions. In the absence of tropopause, the PV produced by the GW force has a surface impact that is significant compared to the surface response due to the large scales. For a cold front, the GW force produces a trough over the mountain and a larger-amplitude ridge immediately downstream. It opposes somehow to the response due to the large scales of the mountain range, which is anticyclonic aloft and cyclonic downstream. For a warm front, the GW force produces a ridge over the mountain and a trough downstream; hence it reinforces the response due to the large scales. Second, the robustness of the previous results is verified by a series of sensitivity tests. The authors change the specifications of the mountain range and of the background flow. They also repeat some experiments by including baroclinic instabilities, or by using the quasigeostrophic approximation. Finally, they consider the case of a small-scale orographic spectrum representative of the Alps. The significance of the results is discussed in the context of GW parameterization in the general circulation models. The results may also help to interpret the complex PV structures occurring when mountain gravity waves break in a baroclinic environment.


2020 ◽  
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal scale gravity waves from datasets composed of images from multiple mesospheric nightglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER satellite in orbits near Kühlungsborn, northern Germany (54.1° N, 11.8° E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We obtain intrinsic parameters of small and large horizontal scale gravity waves and characterize their impact in the mesosphere region via momentum flux and flux divergence estimations. We have verified that a small percent of the detected wave events are responsible for most of the momentum flux measured during the campaign from oscillations seen in the airglow brightness and MSMR winds. From the analysis of small-scale gravity waves in airglow images, we have found wave momentum fluxes ranging from 0.38 to 24.74 m2/s2 (0.88 ± 0.73 m2/s2 on average), with a total of 586.96 m2/s2 (sum over all 362 detected waves). However, small horizontal scale waves with flux > 3 m2/s2 (11 % of the events) transport 50 % of the total measured flux. Likewise, wave events having flux > 10 m2/s2 (2 % of the events) transport 20 % of the total flux. The examination of two large-scale waves seen simultaneously in airglow keograms and MSMR winds revealed relative amplitudes > 35 %, which translates into momentum fluxes of 21.2–29.6 m/s. In terms of gravity wave–mean flow interactions, these high momentum flux waves could cause decelerations of 22–41 m/s/day (small-scale waves) and 38–43 m/s/day (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region. The dominant large-scale waves might be the result of secondary gravity excited from imbalanced flow in the stratosphere caused by primary wave breaking.


Sign in / Sign up

Export Citation Format

Share Document