Convective and turbulent motions in non-precipitating Cu. Part II: LES simulated cloud represented by a starting plume

Abstract The dynamic structure of a small trade-wind Cu is analyzed using a novel approach. Cu developing in a shear-free environment was simulated by 10 m-resolution LES model with spectral bin microphysics. The aim is to clarify the dynamical nature of cloud updraft zone (CUZ) including entrainment and mixing in growing Cu. The validity of concept stating that a cloud at developing state can be represented by a parcel or a jet is tested. To investigate dynamical entrainment in CUZ performed by motions with scales larger than the turbulence scales, the modeled fields of air velocity were filtered by wavelet filter which separated convective motions from turbulent ones. Two types of objects in developing cloud were investigated: small volume ascending at maximal velocity (point parcel) and CUZ. It was found that the point parcel representing the upper part of cloud core is adiabatic. The motion of the air in this parcel ascending from cloud base determines cloud top height. The top hat (i.e., averaged) values of updraft velocity and adiabatic fraction in CUZ are substantially lower than those in the point parcel. Evaluation of the terms in the dynamical equation typically used in 1D cloud parcel models show that this equation can be applied for calculation of vertical velocities at the developing stage of small Cu, at least up to the heights of the inversion layer. Dynamically, the CUZ of developing cloud resembles the starting plume with the tail of non-stationary jet. Both the top hat vertical velocity and buoyancy acceleration linearly increase with the height, at least up to the inversion layer. An important finding is that lateral entrainment of convective (non-turbulent) nature has a little effect on the top hat CUZ velocity and cannot explain the vertical changes of conservative variables qt and θl. In contrast, entrained air lifting inside CUZ substantially decreases top hat liquid water content and its adiabatic fraction. Possible reasons of these effects are discussed.

2019 ◽  
Vol 76 (2) ◽  
pp. 533-560 ◽  
Author(s):  
Pavel Khain ◽  
Reuven Heiblum ◽  
Ulrich Blahak ◽  
Yoav Levi ◽  
Harel Muskatel ◽  
...  

Abstract Shallow convection is a subgrid process in cloud-resolving models for which their grid box is larger than the size of small cumulus clouds (Cu). At the same time such Cu substantially affect radiation properties and thermodynamic parameters of the low atmosphere. The main microphysical parameters used for calculation of radiative properties of Cu in cloud-resolving models are liquid water content (LWC), effective droplet radius, and cloud fraction (CF). In this study, these parameters of fields of small, warm Cu are calculated using large-eddy simulations (LESs) performed using the System for Atmospheric Modeling (SAM) with spectral bin microphysics. Despite the complexity of microphysical processes, several fundamental properties of Cu were found. First, despite the high variability of LWC and droplet concentration within clouds and between different clouds, the volume mean and effective radii per specific level vary only slightly. Second, the values of effective radius are close to those forming during adiabatic ascent of air parcels from cloud base. These findings allow for characterization of a cloud field by specific vertical profiles of effective radius and of mean liquid water content, which can be calculated using the theoretical profile of adiabatic liquid water content and the droplet concentration at cloud base. Using the results of these LESs, a simple parameterization of cloud-field-averaged vertical profiles of effective radius and of liquid water content is proposed for different aerosol and thermodynamic conditions. These profiles can be used for calculation of radiation properties of Cu fields in large-scale models. The role of adiabatic processes in the formation of microstructure of Cu is discussed.


2008 ◽  
Vol 47 (8) ◽  
pp. 2183-2197 ◽  
Author(s):  
Udaysankar S. Nair ◽  
Salvi Asefi ◽  
Ronald M. Welch ◽  
D. K. Ray ◽  
Robert O. Lawton ◽  
...  

Abstract This study details two unique methods to quantify cloud-immersion statistics for tropical montane cloud forests (TMCFs). The first technique uses a new algorithm for determining cloud-base height using Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products, and the second method uses numerical atmospheric simulation along with geostationary satellite data. Cloud-immersion statistics are determined using MODIS data for March 2003 over the study region consisting of Costa Rica, southern Nicaragua, and northern Panama. Comparison with known locations of cloud forests in northern Costa Rica shows that the MODIS-derived cloud-immersion maps successfully identify known cloud-forest locations in the United Nations Environment Programme (UNEP) World Conservation Monitoring Centre (WCMC) database. Large connected regions of cloud immersion are observed in regions in which the trade wind flow is directly impinging upon the mountain slopes; in areas in which the flow is parallel to the slopes, a fractured spatial distribution of TMCFs is observed. Comparisons of the MODIS-derived cloud-immersion map with the model output show that the MODIS product successfully captures the important cloud-immersion patterns in the Monteverde region of Costa Rica. The areal extent of cloud immersion is at a maximum during morning hours and at a minimum during the afternoon, before increasing again in the evening. Cloud-immersion frequencies generally increase with increasing elevation and tend to be higher on the Caribbean Sea side of the mountains. This study shows that the MODIS data may be used successfully to map the biogeography of cloud forests and to quantify cloud immersion over cloud-forest locations.


2016 ◽  
Vol 144 (2) ◽  
pp. 681-701 ◽  
Author(s):  
Virendra P. Ghate ◽  
Mark A. Miller ◽  
Ping Zhu

Abstract Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.


2021 ◽  
Author(s):  
Chris Holloway ◽  
Jian-Feng Gu ◽  
Bob Plant ◽  
Todd Jones

<div> <div> <div> <div> <p>The normalized distributions of thermodynamic and dynamical variables both within and outside shallow clouds are investigated through a composite algorithm using large eddy simulation of the BOMEX case. The normalized magnitude is maximum near cloud center and decreases outwards. While relative humidity (RH) and cloud liquid water (<em>q<sub>l </sub></em>) decrease smoothly to match the environment, the vertical velocity, virtual potential temperature (<em>θ<sub>v </sub></em>) and potential temperature (<em>θ</em>) perturbations have more complicated behaviour towards the cloud boundary. Below the inversion layer, <em>θ<sub>v</sub></em> becomes <span>negative before the vertical velocity has turned from updraft to subsiding shell outside the cloud, indicating the presence of a transition zone where the updraft is negatively buoyant. Due to the downdraft outside the cloud and the enhanced horizontal turbulent mixing across the edge, the normalized turbulence kinetic energy (TKE) and horizontal turbulence kinetic energy (HTKE) decrease more slowly from the cloud center outwards than the thermodynamic variables. The distributions all present asymmetric structures in response to the vertical wind shear, with more negatively buoyant air, stronger downdrafts and larger TKE on the downshear side. We discuss several implications of the distributions for theoretical models and parameterizations. Positive buoyancy near cloud base is mostly due to </span><span>the virtual effect of water vapor, emphasising the role of moisture in triggering. The mean vertical velocity is found </span><span>to be approximately half the maximum vertical velocity within each cloud, providing a constraint on some models. Finally, products of normalized distributions for different variables are shown to be able to well represent the vertical heat and moisture fluxes, but they underestimate fluxes in the inversion layer because they do not capture cloud top downdrafts.</span></p> </div> </div> </div> </div>


1995 ◽  
Vol 52 (16) ◽  
pp. 2941-2952 ◽  
Author(s):  
Wayne H. Schubert ◽  
Paul E. Ciesielski ◽  
Chungu Lu ◽  
Richard H. Johnson

2014 ◽  
Vol 14 (13) ◽  
pp. 6695-6716 ◽  
Author(s):  
A. Muhlbauer ◽  
I. L. McCoy ◽  
R. Wood

Abstract. An artificial neural network cloud classification scheme is combined with A-train observations to characterize the physical properties and radiative effects of marine low clouds based on their morphology and type of mesoscale cellular convection (MCC) on a global scale. The cloud morphological categories are (i) organized closed MCC, (ii) organized open MCC and (iii) cellular but disorganized MCC. Global distributions of the frequency of occurrence of MCC types show clear regional signatures. Organized closed and open MCCs are most frequently found in subtropical regions and in midlatitude storm tracks of both hemispheres. Cellular but disorganized MCC are the predominant type of marine low clouds in regions with warmer sea surface temperature such as in the tropics and trade wind zones. All MCC types exhibit a pronounced seasonal cycle. The physical properties of MCCs such as cloud fraction, radar reflectivity, drizzle rates and cloud top heights as well as the radiative effects of MCCs are found highly variable and a function of the type of MCC. On a global scale, the cloud fraction is largest for closed MCC with mean cloud fractions of about 90%, whereas cloud fractions of open and cellular but disorganized MCC are only about 51% and 40%, respectively. Probability density functions (PDFs) of cloud fractions are heavily skewed and exhibit modest regional variability. PDFs of column maximum radar reflectivities and inferred cloud base drizzle rates indicate fundamental differences in the cloud and precipitation characteristics of different MCC types. Similarly, the radiative effects of MCCs differ substantially from each other in terms of shortwave reflectance and transmissivity. These differences highlight the importance of low-cloud morphologies and their associated cloudiness on the shortwave cloud forcing.


2014 ◽  
Vol 7 (9) ◽  
pp. 9917-9992 ◽  
Author(s):  
D. P. Donovan ◽  
H. Klein Baltink ◽  
J. S. Henzing ◽  
S. R. de Roode ◽  
A. P. Siebesma

Abstract. The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. liquid water content) and microphysical (e.g. effective radius) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud-base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2–3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.


2021 ◽  
Author(s):  
Eshkol Eytan ◽  
Ilan Koren ◽  
Alexander Khain ◽  
Orit Altaratz ◽  
Mark Pinsky ◽  
...  

<p>The strong coupling between dynamic, thermodynamic, and microphysical processes and the numerous environmental parameters on which they depend makes clouds a highly complex system. Adiabatic regions (i.e., undiluted core) in the cloud allow to approximate in a simple way thermodynamic and microphysical profiles and provide local boundary conditions (i.e. core is a source of adiabatic values in each level). Mixing of the cloud with its environment affects both the cloud and the environmental properties. While environmental humidity, temperature and aerosol loading affect the clouds’ buoyancy and droplets size distribution (DSD), clouds simultaneously affect their surrounding via detrainment of droplets, humid air, and processed aerosols. Mixing occurs within a large spectrum of scales and leads to deviation of parts of the cloud from adiabaticity. The level of adiabaticity can be represented continuously by the adiabatic fraction (AF; defined as the ratio of the liquid water content to the theoretical adiabatic value). In this work we used the System of Atmosphere Modeling (SAM) with the Hebrew University Spectral Bin Microphysics to simulate a few isolated non-precipitating trade cumulus clouds (in different sizes and aerosol loading) in high resolution (10m). Passive tracer was added to all the simulations. We found cloudy volumes that contain both high tracer concentration and high AF (up to the clouds’ top), compared these two measures of mixing, and discuss their differences. The accuracy of AF calculations, based on different known methods is tested. For example, we show that the saturation adjustment assumption that is often used in AF calculations can lead to an underestimation of AF in pristine environments. This will mask microphysical effects and cause biases when comparing the adiabaticity of clouds under different aerosols loading. We show that the space spanned by the AF versus height in the cloud is a good measure for describing changes in cloud’s key variables in space and time (like temperature, updraft, and DSD properties). This space of AF vs height demonstrates how certain processes (e.g. in-cloud nucleation, mixing, evaporation, etc.) dominate different regions in the cloud (core, edge), and cause different dependence of the DSD on AF under different aerosols loading.</p>


2016 ◽  
Author(s):  
Sami Romakkaniemi ◽  
Zubair Maalick ◽  
Antti Hellsten ◽  
Antti Ruuskanen ◽  
Olli Väisänen ◽  
...  

Abstract. Long-term in situ measurements of aerosol-cloud interactions are usually performed in measurement stations residing on hills, mountains, or high towers. In such conditions, the surface topography of the surrounding area can affect the measured cloud droplet distributions by increasing turbulence or causing orographic flows and thus the observations might not be representative for a larger scale. The objective of this work is to analyse, how the local topography affects the observations at Puijo measurement station, which is located in the 75 m high Puijo tower, which itself stands on a 150 m high hill. The analysis of the measurement data shows that the observed cloud droplet number concentration mainly depends on the CCN concentration. However, when the wind direction aligns with the direction of the steepest slope of the hill, a clear topography effect is observed. This finding was further analysed by simulating 3D flow fields around the station and by performing trajectory ensemble modelling of aerosol- and wind-dependent cloud droplet formation. The results showed that in typical conditions, with geostrophic winds of about 10 m s−1, the hill can cause updrafts of up to 1 m s−1 in the air parcels arriving at the station. This is enough to produce in-cloud supersaturations higher than typically found at the cloud base (SS of ~ 0.2 %), and thus additional cloud droplets may form inside the cloud. In the observations, this is seen in the form of a bi-modal cloud droplet size distribution. The effect is strongest with high winds across the steepest slope of the hill and with low liquid water contents, and its relative importance quickly decreases as these conditions are relaxed. We therefore conclude that, after careful screening for wind speed and liquid water content, the observations at Puijo measurement station can be considered representative for clouds in a boreal environment.


2020 ◽  
Vol 246 ◽  
pp. 105100
Author(s):  
Kyoung Ock Choi ◽  
Seong Soo Yum ◽  
Dong Yeong Chang ◽  
Jae Min Yeom ◽  
Seoung Soo Lee

Sign in / Sign up

Export Citation Format

Share Document