The adiabaticity of warm cumulus clouds simulated in high-resolution 

Author(s):  
Eshkol Eytan ◽  
Ilan Koren ◽  
Alexander Khain ◽  
Orit Altaratz ◽  
Mark Pinsky ◽  
...  

<p>The strong coupling between dynamic, thermodynamic, and microphysical processes and the numerous environmental parameters on which they depend makes clouds a highly complex system. Adiabatic regions (i.e., undiluted core) in the cloud allow to approximate in a simple way thermodynamic and microphysical profiles and provide local boundary conditions (i.e. core is a source of adiabatic values in each level). Mixing of the cloud with its environment affects both the cloud and the environmental properties. While environmental humidity, temperature and aerosol loading affect the clouds’ buoyancy and droplets size distribution (DSD), clouds simultaneously affect their surrounding via detrainment of droplets, humid air, and processed aerosols. Mixing occurs within a large spectrum of scales and leads to deviation of parts of the cloud from adiabaticity. The level of adiabaticity can be represented continuously by the adiabatic fraction (AF; defined as the ratio of the liquid water content to the theoretical adiabatic value). In this work we used the System of Atmosphere Modeling (SAM) with the Hebrew University Spectral Bin Microphysics to simulate a few isolated non-precipitating trade cumulus clouds (in different sizes and aerosol loading) in high resolution (10m). Passive tracer was added to all the simulations. We found cloudy volumes that contain both high tracer concentration and high AF (up to the clouds’ top), compared these two measures of mixing, and discuss their differences. The accuracy of AF calculations, based on different known methods is tested. For example, we show that the saturation adjustment assumption that is often used in AF calculations can lead to an underestimation of AF in pristine environments. This will mask microphysical effects and cause biases when comparing the adiabaticity of clouds under different aerosols loading. We show that the space spanned by the AF versus height in the cloud is a good measure for describing changes in cloud’s key variables in space and time (like temperature, updraft, and DSD properties). This space of AF vs height demonstrates how certain processes (e.g. in-cloud nucleation, mixing, evaporation, etc.) dominate different regions in the cloud (core, edge), and cause different dependence of the DSD on AF under different aerosols loading.</p>

Author(s):  
Eshkol Eytan ◽  
Alexander Khain ◽  
Mark Pinsky ◽  
Orit Altaratz ◽  
Jacob Shpund ◽  
...  

Abstract Shallow convective clouds are important players in Earth’s energy budget and hydrological cycle, and are abundant in the tropical and subtropical belts. They greatly contribute to the uncertainty in climate predictions, due to their unresolved, complex processes that include coupling between the dynamics and microphysics. Analysis of cloud structure can be simplified by considering cloud motions as a combination of moist adiabatic motions like adiabatic updrafts and turbulent motions leading to deviation from adiabaticity. In this work, we study the sizes and occurrence of adiabatic regions in shallow cumulus clouds during their growth and mature stages, and use the adiabatic fraction (AF) as a continuous metric to describe cloud processes and properties from the core to the edge. To do so, we simulate isolated trade wind cumulus clouds of different sizes using the System of Atmospheric Modeling (SAM) model in high-resolution (10 m) with the Hebrew University spectral bin microphysics (SBM). The fine features in the cloud’s dynamics and microphysics, including small near-adiabatic volumes and a thin transition zone at the edge of the cloud (∼20-40 m in width) are captured. The AF is shown to be an efficient measure for analyzing cloud properties and key processes determining the droplets-size-distribution formation and shape during the cloud evolution. Physical processes governing the properties of droplets size distributions at different cloud regions (e.g. core, edge) are analyzed in relation to AF.


2021 ◽  
Vol 21 (21) ◽  
pp. 16203-16217
Author(s):  
Eshkol Eytan ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Mark Pinsky ◽  
Alexander Khain

Abstract. The process of mixing in warm convective clouds and its effects on microphysics are crucial for an accurate description of cloud fields, weather, and climate. Still, they remain open questions in the field of cloud physics. Adiabatic regions in the cloud could be considered non-mixed areas and therefore serve as an important reference to mixing. For this reason, the adiabatic fraction (AF) is an important parameter that estimates the mixing level in the cloud in a simple way. Here, we test different methods of AF calculations using high-resolution (10 m) simulations of isolated warm cumulus clouds. The calculated AFs are compared with a normalized concentration of a passive tracer, which is a measure of dilution by mixing. This comparison enables the examination of how well the AF parameter can determine mixing effects and the estimation of the accuracy of different approaches used to calculate it. Comparison of three different methods to derive AF, with the passive tracer, shows that one method is much more robust than the others. Moreover, this method's equation structure also allows for the isolation of different assumptions that are often practiced when calculating AF such as vertical profiles, cloud-base height, and the linearity of AF with height. The use of a detailed spectral bin microphysics scheme allows an accurate description of the supersaturation field and demonstrates that the accuracy of the saturation adjustment assumption depends on aerosol concentration, leading to an underestimation of AF in pristine environments.


2021 ◽  
Author(s):  
Eshkol Eytan ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Mark Pinsky ◽  
Alexander Khain

Abstract. The process of mixing in warm convective clouds and its effects on microphysics, is crucial for an accurate description of cloud fields, weather, and climate. Still, it remains an open question in the field of cloud physics. Adiabatic regions in the cloud could be considered as non-mixed areas and therefore serve as an important reference to mixing. Therefore, the adiabatic fraction (AF) is an important parameter that estimates the mixing level in the cloud in a simple way. Here, we test different methods of AF calculations using high-resolution (10 m) simulations of isolated warm Cumulus clouds. The calculated AFs are compared with a normalized concentration of a passive tracer, which is a measure of dilution by mixing. This comparison enables us to examine how well the AF parameter can determine mixing effects, and to estimate the accuracy of different approaches used to calculate it. The sensitivity of the calculated AF to the choice of different equations, vertical profiles, cloud base height, and its linearity with height are all tested. Moreover, the use of a detailed spectral bin microphysics scheme demonstrates that the accuracy of the saturation adjustment assumption depends on aerosol concentration, and leads to an underestimation of AF in pristine environments.


Author(s):  
Mark Pinsky ◽  
Eshkol Eytan ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Alexander Khain

AbstractAtmospheric motions in clouds and cloud surrounding have a wide range of scales, from several kilometers to centimeters. These motions have different impacts on cloud dynamics and microphysics. Larger-scale motions (hereafter referred to as convective motions) are responsible for mass transport over distances comparable with cloud scale, while motions of smaller scales (hereafter referred to as turbulent motions) are stochastic and responsible for mixing and cloud dilution. This distinction substantially simplifies the analysis of dynamic and microphysical processes in clouds. The present research is Part 1 of the study aimed at describing the method for separating the motion scale into a convective component and a turbulent component. An idealized flow is constructed, which is a sum of an initially prescribed field of the convective velocity with updrafts in the cloud core and downdrafts outside the core, and a stochastic turbulent velocity field obeying the turbulent properties, including the -5/3 law and the 2/3 structure function law. A wavelet method is developed allowing separation of the velocity field into the convective and turbulent components, with parameter values being in a good agreement with those prescribed initially. The efficiency of the method is demonstrated by an example of a vertical velocity field of a cumulus cloud simulated using SAM with bin-microphysics and resolution of 10 m. It is shown that vertical velocity in clouds indeed can be represented as a sum of convective velocity (forming zone of cloud updrafts and subsiding shell) and a stochastic velocity obeying laws of homogeneous and isotropic turbulence.


2014 ◽  
Vol 14 (5) ◽  
pp. 2479-2496 ◽  
Author(s):  
D. Rosenfeld ◽  
G. Liu ◽  
X. Yu ◽  
Y. Zhu ◽  
J. Dai ◽  
...  

Abstract. VIIRS (Visible Infrared Imaging Radiometer Suite), onboard the Suomi NPP (National Polar-orbiting Partnership) satellite, has an improved resolution of 750 m with respect to the 1000 m of the Moderate Resolution Imaging Spectroradiometer for the channels that allow retrieving cloud microphysical parameters such as cloud drop effective radius (re). VIIRS also has an imager with five channels of double resolution of 375 m, which was not designed for retrieving cloud products. A methodology for a high-resolution retrieval of re and microphysical presentation of the cloud field based on the VIIRS imager was developed and evaluated with respect to MODIS in this study. The tripled microphysical resolution with respect to MODIS allows obtaining new insights for cloud–aerosol interactions, especially at the smallest cloud scales, because the VIIRS imager can resolve the small convective elements that are sub-pixel for MODIS cloud products. Examples are given for new insights into ship tracks in marine stratocumulus, pollution tracks from point and diffused sources in stratocumulus and cumulus clouds over land, deep tropical convection in pristine air mass over ocean and land, tropical clouds that develop in smoke from forest fires and in heavy pollution haze over densely populated regions in southeastern Asia, and for pyro-cumulonimbus clouds. It is found that the VIIRS imager provides more robust physical interpretation and refined information for cloud and aerosol microphysics as compared to MODIS, especially in the initial stage of cloud formation. VIIRS is found to identify significantly more fully cloudy pixels when small boundary layer convective elements are present. This, in turn, allows for a better quantification of cloud–aerosol interactions and impacts on precipitation-forming processes.


2005 ◽  
Vol 62 (12) ◽  
pp. 4206-4221 ◽  
Author(s):  
Wanda Szyrmer ◽  
Stéphane Laroche ◽  
Isztar Zawadzki

Abstract The authors address the problem of optimization of the microphysical information extracted from a simulation system composed of high-resolution numerical models and multiparameter radar data or other available measurements. As a tool in the exploration of this question, a bulk microphysical scheme based on the general approach of scaling normalization of particle size distribution (PSD) is proposed. This approach does not rely on a particular functional form imposed on the PSD and naturally leads to power-law relationships between the PSD moments providing an accurate and compact PSD representation. To take into account the possible evolution of the shape/curvature of the distribution, ignored within standard one- and two-moment microphysical schemes, a new three-moment scheme based on the two-moment scaling normalization is proposed. The methodology of the moment retrieval included in the three-moment scheme can also be useful as a retrieval algorithm combining different remote sensing observations. The developed bulk microphysical scheme presents a unified formulation for microphysical parameterization using one, two, or three independent moments, suitable in the context of data assimilation. The effectiveness of the scheme with different combinations of independent moments is evaluated by comparison with a very high resolution spectral model within a 1D framework on representative microphysical processes: rain sedimentation and evaporation.


2016 ◽  
Vol 33 (3) ◽  
pp. 579-595 ◽  
Author(s):  
Christopher R. Williams

AbstractThis study consists of two parts. The first part describes the way in which vertical air motions and raindrop size distributions (DSDs) were retrieved from 449-MHz and 2.835-GHz (UHF and S band) vertically pointing radars (VPRs) deployed side by side during the Midlatitude Continental Convective Clouds Experiment (MC3E) held in northern Oklahoma. The 449-MHz VPR can measure both vertical air motion and raindrop motion. The S-band VPR can measure only raindrop motion. These differences in VPR sensitivities facilitates the identification of two peaks in 449-MHz VPR reflectivity-weighted Doppler velocity spectra and the retrieval of vertical air motion and DSD parameters from near the surface to just below the melting layer.The second part of this study used the retrieved DSD parameters to decompose reflectivity and liquid water content (LWC) into two terms, one representing number concentration and the other representing DSD shape. Reflectivity and LWC vertical decomposition diagrams (Z-VDDs and LWC-VDDs, respectively) are introduced to highlight interactions between raindrop number and DSD shape in the vertical column. Analysis of Z-VDDs provides indirect measure of microphysical processes through radar reflectivity. Analysis of LWC-VDDs provides direct investigation of microphysical processes in the vertical column, including net raindrop evaporation or accretion and net raindrop breakup or coalescence. During a stratiform rain event (20 May 2011), LWC-VDDs exhibited signatures of net evaporation and net raindrop coalescence as the raindrops fell a distance of 2 km under a well-defined radar bright band. The LWC-VDD is a tool to characterize rain microphysics with quantities related to number-controlled and size-controlled processes.


2017 ◽  
Vol 74 (10) ◽  
pp. 3145-3166 ◽  
Author(s):  
K. Gayatri ◽  
S. Patade ◽  
T. V. Prabha

Abstract The Weather Research and Forecasting (WRF) Model coupled with a spectral bin microphysics (SBM) scheme is used to investigate aerosol effects on cloud microphysics and precipitation over the Indian peninsular region. The main emphasis of the study is in comparing simulated cloud microphysical structure with in situ aircraft observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). Aerosol–cloud interaction over the rain-shadow region is investigated with observed and simulated size distribution spectra of cloud droplets and ice particles in monsoon clouds. It is shown that size distributions as well as other microphysical characteristics obtained from simulations such as liquid water content, cloud droplet effective radius, cloud droplet number concentration, and thermodynamic parameters are in good agreement with the observations. It is seen that in clouds with high cloud condensation nuclei (CCN) concentrations, snow and graupel size distribution spectra were broader compared to clouds with low concentrations of CCN, mainly because of enhanced riming in the presence of a large number of droplets with a diameter of 10–30 μm. The Hallett–Mossop ice multiplication process is illustrated to have an impact on snow and graupel mass. The changes in CCN concentrations have a strong effect on cloud properties over the domain, amounts of cloud water, and the glaciation of the clouds, but the effects on surface precipitation are small when averaged over a large area. Overall enhancement of cold-phase cloud processes in the high-CCN case contributed to slight enhancement (5%) in domain-averaged surface precipitation.


2016 ◽  
Vol 16 (3) ◽  
pp. 1849-1862 ◽  
Author(s):  
L. Magaritz-Ronen ◽  
M. Pinsky ◽  
A. Khain

Abstract. The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic and characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. It was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.


2020 ◽  
Author(s):  
Nicolai Schleinkofer ◽  
Jacek Raddatz ◽  
David Evans ◽  
Axel Gerdes ◽  
Silke Voigt ◽  
...  

<p>Phytoplankton is one of the most important producers of oxygen, and plays an important role in the export of large amounts of carbon to the deeper ocean. Since phytoplankton is also the basis of most food webs in the ocean, understanding the dynamic system of phytoplankton is a crucial part to understand past carbon- and nutrient cycles and paleoclimatic changes. The export of nutrients is also an important factor impacting cold-water coral (CWC) reefs and may play a role in controlling their distribution. Here we present laser ablation inductively coupled mass spectrometer (LA-ICP-MS) Element/Ca measurements from Acesta excavata, a file clam, often associated with cold-water coral reefs along the European continental margin. Environmental parameters were recorded with lander systems directly deployed in the CWC reefs, which allows us to compare our geochemical data to in-situ ocean data.</p><p>Our results reveal, that Ba/Ca ratios show stable baseline values with intermittent sharp peaks. The location of these peaks in between major growth lines and temperature reconstructions with Mg/Sr ratios (Schleinkofer et al., submitted) show that these peaks occur during Winter and are repeatable between samples from the same location. This indicates a strong external forcing mechanism and allows cross-dating of different bivalve shells. While the occurrence of Ba/Ca peaks correlates with phytoplankton maxima, the absolute Ba/Ca ratio does not correlate with the phytoplankton abundance.</p><p>Mn/Ca ratios show similar trends as Ba/Ca ratios but the peaks are phase shifted and occur slightly delayed. These peaks could be triggered by decreasing oxygen concentrations in the water caused by the decomposition of organic material.</p><p>As A. excavata does not show easily distinguishable growth lines under the light microscope despite of Mutvei staining or fluorescence microscopy, we hypothesize that P/Ca ratios might be usable to locate highly phosphorylated shell areas that usually correlate with major growth lines. P/Ca ratios show no perceivable features in the vicinity of major growth lines. Instead we recognize that Ba/Ca peaks follow a minimum in P/Ca which is possibly caused by the uptake of phosphor by plankton.</p><p>These results suggest that A. excavata have potential as a promising tool for high resolution paleoenvironmental reconstructions of both intermediate and overlying surface water masses.</p><p>References</p><p>Schleinkofer N, Raddatz J, Evans D, Gerdes A, Flögel S, Voigt S, et al. Elemental to calcium ratios in the marine bivalve Acesta excavata: an archive for high-resolution paleoceanographic reconstructions of intermediate water masses. PLoS One. Submitted</p>


Sign in / Sign up

Export Citation Format

Share Document