Tropical Tropospheric-Only Responses to Absorbing Aerosols

2012 ◽  
Vol 25 (7) ◽  
pp. 2471-2480 ◽  
Author(s):  
Geeta G. Persad ◽  
Yi Ming ◽  
V. Ramaswamy

Abstract Absorbing aerosols affect the earth’s climate through direct radiative heating of the troposphere. This study analyzes the tropical tropospheric-only response to a globally uniform increase in black carbon, simulated with an atmospheric general circulation model, to gain insight into the interactions that determine the radiative flux perturbation. Over the convective regions, heating in the free troposphere hinders the vertical development of deep cumulus clouds, resulting in the detrainment of more cloudy air into the large-scale environment and stronger cloud reflection. A different mechanism operates over the subsidence regions, where heating near the boundary layer top causes a substantial reduction in low cloud amount thermodynamically by decreasing relative humidity and dynamically by lowering cloud top. These findings, which align well with previous general circulation model and large-eddy simulation calculations for black carbon, provide physically based explanations for the main characteristics of the tropical tropospheric adjustment. The implications for quantifying the climate perturbation posed by absorbing aerosols are discussed.

2020 ◽  
Vol 13 (6) ◽  
pp. 2671-2694
Author(s):  
Harald Rybka ◽  
Holger Tost

Abstract. A new module has been implemented in the fifth generation of the ECMWF/Hamburg (ECHAM5)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model that simulates cloud-related processes on a much smaller grid. This so-called superparameterisation acts as a replacement for the convection parameterisation and large-scale cloud scheme. The concept of embedding a cloud-resolving model (CRM) inside of each grid box of a general circulation model leads to an explicit representation of cloud dynamics. The new model component is evaluated against observations and the conventional usage of EMAC using a convection parameterisation. In particular, effects of applying different configurations of the superparameterisation are analysed in a systematical way. Consequences of changing the CRM's orientation, cell size and number of cells range from regional differences in cloud amount up to global impacts on precipitation distribution and its variability. For some edge case setups, the analysed climate state of superparameterised simulations even deteriorates from the mean observed energy budget. In the current model configuration, different climate regimes can be formed that are mainly driven by some of the parameters of the CRM. Presently, the simulated total cloud cover is at the lower edge of the CMIP5 model ensemble. However, certain “tuning” of the current model configuration could improve the slightly underestimated cloud cover, which will result in a shift of the simulated climate. The simulation results show that especially tropical precipitation is better represented with the superparameterisation in the EMAC model configuration. Furthermore, the diurnal cycle of precipitation is heavily affected by the choice of the CRM parameters. However, despite an improvement of the representation of the continental diurnal cycle in some configurations, other parameter choices result in a deterioration compared to the reference simulation using a conventional convection parameterisation. The ability of the superparameterisation to represent latent and sensible heat flux climatology is independent of the chosen CRM setup. Evaluation of in-atmosphere cloud amounts depending on the chosen CRM setup shows that cloud development can significantly be influenced on the large scale using a too-small CRM domain size. Therefore, a careful selection of the CRM setup is recommended using 32 or more CRM cells to compensate for computational expenses.


2004 ◽  
Vol 22 (5) ◽  
pp. 1421-1434 ◽  
Author(s):  
A. Chakraborty ◽  
S. K. Satheesh ◽  
R. S. Nanjundiah ◽  
J. Srinivasan

Abstract. The impact of anthropogenic absorbing aerosols (such as soot) on the climate over the Indian region has been studied using the NCMRWF general circulation model. The absorbing aerosols increase shortwave radiative heating of the lower troposphere and reduce the heating at the surface. These effects have been incorporated as heating of the lower troposphere (up to 700hPa) and cooling over the continental surface based on INDOEX measurements. The heating effect is constant in the pre-monsoon season and reduces to zero during the monsoon season. It is shown that even in the monsoon season when the aerosol forcing is zero, there is an overall increase in rainfall and a reduction in surface temperature over the Indian region. The rainfall averaged over the Tropics shows a small reduction in most of the months during the January to September period. The impact of aerosol forcing, the model's sensitivity to this forcing and its interaction with model-physics has been studied by changing the cumulus parameterization from the Simplified Arakawa-Schubert (SAS) scheme to the Kuo scheme. During the pre-monsoon season the major changes in precipitation occur in the oceanic Inter Tropical Convergence Zone (ITCZ), where both the schemes show an increase in precipitation. This result is similar to that reported in Chung2002. On the other hand, during the monsoon season the changes in precipitation in the continental region are different in the SAS and Kuo schemes. It is shown that the heating due to absorbing aerosols changes the vertical moist-static stability of the atmosphere. The difference in the precipitation changes in the two cumulus schemes is on account of the different responses in the two parameterization schemes to changes in vertical stability. Key words. Atmospheric composition and structure (aerosols and particles) – Meteorology and atmospheric dynamics (tropical meteorology; precipitation)


Tellus ◽  
1976 ◽  
Vol 28 (3) ◽  
pp. 228-242 ◽  
Author(s):  
Rick Salmon ◽  
Myrl C. Hendershott

2011 ◽  
Vol 24 (16) ◽  
pp. 4368-4384 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Alessio Bellucci ◽  
Antonella Sanna ◽  
Pier Giuseppe Fogli ◽  
...  

Abstract In this paper the interplay between tropical cyclones (TCs) and the Northern Hemispheric ocean heat transport (OHT) is investigated. In particular, results from a numerical simulation of the twentieth-century and twenty-first-century climates, following the Intergovernmental Panel on Climate Change (IPCC) twentieth-century run (20C3M) and A1B scenario protocols, respectively, have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere–ocean–sea ice coupled general circulation model (CGCM) with relatively high-resolution (T159) in the atmosphere. The CGCM skill in reproducing a realistic TC climatology has been assessed by comparing the model results from the simulation of the twentieth century with available observations. The model simulates tropical cyclone–like vortices with many features similar to the observed TCs. Specifically, the simulated TCs exhibit realistic structure, geographical distribution, and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large-scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model. TC activity is shown to significantly increase the poleward OHT out of the tropics and decrease the poleward OHT from the deep tropics on short time scales. This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface, where the winds associated with the TCs significantly weaken (strengthen) the trade winds in the 5°–18°N (18°–30°N) latitude belt. However, the induced perturbation does not impact the yearly averaged OHT. The frequency and intensity of the TCs appear to be substantially stationary through the entire 1950–2069 simulated period, as does the effect of the TCs on the OHT.


MAUSAM ◽  
2021 ◽  
Vol 50 (4) ◽  
pp. 391-400
Author(s):  
BIJU THOMAS ◽  
S.V. KASTURE ◽  
S. V. SATYAN

A global, spectral Atmospheric General Circulation Model (AGCM) has been developed indigenously at Physical Research Laboratory (PRL) for climate studies. The model has six a levels in the vertical and has horizontal resolution of 21 waves with rhomboidal truncation. The model includes smooth topography, planetary boundary layer, deep convection, large scale condensation, interactive hydrology, radiation with interactive clouds and diurnal cycle. Sea surface temperature and sea ice values were fixed based on climatological data for different calender months.   The model was integrated for six years starting with an isothermal atmosphere (2400K), zero winds initial conditions and forcing from incoming solar radiation. After one year the model stabilizes. The seasonal averages of various fields of the last five years are discussed in this paper. It is found that the model reproduces reasonably well the seasonal features of atmospheric circulation, seasonal variability and hemispheric differences.


2005 ◽  
Vol 5 (2) ◽  
pp. 1383-1419 ◽  
Author(s):  
B. Croft ◽  
U. Lohmann ◽  
K. von Salzen

Abstract. Black carbon (BC) particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of 5 BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma) atmospheric general circulation model (AGCM). The focus of this work is on the conversion of insoluble BC to soluble/mixed BC. Four separate parameterizations of this ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1) an exponential 10 decay with a fixed 24 h half-life, 2) a condensation and coagulation scheme, 3) an oxidative scheme, and 4) a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11 Tg C for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. A computationally efficient parameterization that represents the 15 processes of condensation, coagulation and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition.


1989 ◽  
Vol 46 (13) ◽  
pp. 1943-1970 ◽  
Author(s):  
David A. Randall ◽  
Harshvardhan ◽  
Donald A. Dazlich ◽  
Thomas G. Corsetti

Sign in / Sign up

Export Citation Format

Share Document