scholarly journals Moist Dynamics of Extended Monsoon Breaks over South Asia

2012 ◽  
Vol 25 (11) ◽  
pp. 3810-3831 ◽  
Author(s):  
V. Prasanna ◽  
H. Annamalai

In the present research to identify moist processes that initiate and maintain extended monsoon breaks over South Asia moisture and moist static energy (MSE) budgets are performed on the newly available European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-Interim) and ensemble integrations from a coupled model. The hypothesis that interaction between moist physics and regional circulation and the role of cloud–radiation feedbacks are important is tested. Budget diagnostics show that dry advection is the principal moist process to initiate extended breaks. Its sources are (i) regional anticyclonic circulation anomalies forced by equatorial Indian Ocean negative rainfall anomalies advect low MSE air from north to central India, and (ii) rainfall enhancement over tropical west Pacific forces cyclonic circulation anomalies to its northwest as a Rossby wave response, and the northerlies at the poleward flank of this circulation advect air of low MSE content from north. The dominance of anomalous wind acting on climatological moisture gradient is confirmed from an examination of the moisture advection equation. A partition of various flux terms indicates that over central India, due to an increase in upwelling shortwave and longwave fluxes, radiative cooling increases during extended breaks. Here, enhanced rainfall over the equatorial Indian Ocean promotes anomalous radiative warming due to trapping of upwelling fluxes. The differential radiative heating anchors a local Hadley circulation with descent over central India. A direct implication of this research is that observational efforts are necessary to monitor the three-dimensional moisture distribution and cloud–radiation interaction over the monsoon region that would aid in better understanding, modeling, and predicting extended monsoon breaks.

2017 ◽  
Vol 30 (20) ◽  
pp. 8159-8178 ◽  
Author(s):  
H. Annamalai ◽  
Bunmei Taguchi ◽  
Julian P. McCreary ◽  
Motoki Nagura ◽  
Toru Miyama

Abstract Forecasting monsoon rainfall using dynamical climate models has met with little success, partly due to models’ inability to represent the monsoon climatological state accurately. In this article the nature and dynamical causes of their biases are investigated. The approach is to analyze errors in multimodel-mean climatological fields determined from CMIP5, and to carry out sensitivity experiments using a coupled model [the Coupled Model for the Earth Simulator (CFES)] that does represent the monsoon realistically. Precipitation errors in the CMIP5 models persist throughout the annual cycle, with positive (negative) errors occurring over the near-equatorial western Indian Ocean (South Asia). Model errors indicate that an easterly wind stress bias Δτ along the equator begins during April–May and peaks during November; the severity of the Δτ is that the Wyrtki jets, eastward-flowing equatorial currents during the intermonsoon seasons (April–May and October–November), are almost eliminated. An erroneous east–west SST gradient (warm west and cold east) develops in June. The structure of the model errors indicates that they arise from Bjerknes feedback in the equatorial Indian Ocean (EIO). Vertically integrated moisture and moist static energy budgets confirm that warm SST bias in the western EIO anchors moist processes that cause the positive precipitation bias there. In CFES sensitivity experiments in which Δτ or warm SST bias over the western EIO is artificially introduced, errors in the EIO are similar to those in the CMIP5 models; moreover, precipitation over South Asia is reduced. An overall implication of these results is that South Asian rainfall errors in CMIP5 models are linked to errors of coupled processes in the western EIO, and in coupled models correct representation of EIO coupled processes (Bjerknes feedback) is a necessary condition for realistic monsoon simulation.


2012 ◽  
Vol 69 (1) ◽  
pp. 97-115 ◽  
Author(s):  
Prasanth A. Pillai ◽  
H. Annamalai

Abstract Diagnostics from observations and multicentury integrations of a coupled model [Geophysical Fluid Dynamics Laboratory (GFDL) coupled model version 2.1 (CM2.1)] indicate that about 65% of the severe monsoons (rainfall > 1.5 standard deviations of its long-term mean) over South Asia are associated with sea surface temperature (SST) anomalies over the equatorial Pacific during the developing phase of ENSO, and another 30% are associated with SST variations over the tropical Indo-Pacific warm pool. The present research aims to identify the moist processes that initiate the dryness (wetness) and provide a precursor for rainfall anomalies over South Asia in spring during El Niño (La Niña). The hypothesis in this paper, based on CM2.1 composites, is that at low levels El Niño–forced equatorial easterly wind anomalies over the Indian Ocean, resulting from Ekman pumping, promote anticyclonic vorticity over the northern Indian Ocean, whose poleward flank advects dry air from northern latitudes to South Asia. This is tested by performing ensemble simulations with the atmospheric component of CM2.1 (AM2.1) and applying moisture and moist static energy budgets. During El Niño, AM2.1 solutions capture the anticyclonic vorticity formation over the northern Indian Ocean 20–25 days earlier than organized negative rainfall anomalies over South Asia, and the advection of climatological air of lower moisture content by these anomalous winds initiates the dryness over South Asia from April onward. This long lead time embodied in this precursor signal can be exploited for predicting severe monsoons. During ENSO neutral conditions, the amplitude of regional SST anomalies during spring is insufficient to produce such a precursor signal. The dominance of the term warrants monitoring the three-dimensional moisture distribution for better understanding, modeling, and predicting of severe monsoons.


2017 ◽  
Vol 50 (5-6) ◽  
pp. 1659-1673 ◽  
Author(s):  
G. Srinivas ◽  
Jasti S. Chowdary ◽  
C. Gnanaseelan ◽  
K. V. S. R. Prasad ◽  
Ananya Karmakar ◽  
...  

2013 ◽  
Vol 26 (16) ◽  
pp. 6067-6080 ◽  
Author(s):  
Xiao-Tong Zheng ◽  
Shang-Ping Xie ◽  
Yan Du ◽  
Lin Liu ◽  
Gang Huang ◽  
...  

Abstract The response of the Indian Ocean dipole (IOD) mode to global warming is investigated based on simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to increased greenhouse gases, an IOD-like warming pattern appears in the equatorial Indian Ocean, with reduced (enhanced) warming in the east (west), an easterly wind trend, and thermocline shoaling in the east. Despite a shoaling thermocline and strengthened thermocline feedback in the eastern equatorial Indian Ocean, the interannual variance of the IOD mode remains largely unchanged in sea surface temperature (SST) as atmospheric feedback and zonal wind variance weaken under global warming. The negative skewness in eastern Indian Ocean SST is reduced as a result of the shoaling thermocline. The change in interannual IOD variance exhibits some variability among models, and this intermodel variability is correlated with the change in thermocline feedback. The results herein illustrate that mean state changes modulate interannual modes, and suggest that recent changes in the IOD mode are likely due to natural variations.


2021 ◽  
Author(s):  
Mayank Suman ◽  
Rajib Maity

<p>Indian Summer Monsoon is vulnerable to climate change. Analysis of precipitation over India suggests more increase in extreme precipitation over south India as compared to north and central India during post-1970 (1971-2017) as compared to pre-1970 (1930-1970) (Suman and Maity, 2020). This contrast in the characteristics of extreme precipitation over south and north India is expected to continue as revealed by the analysis of precipitation from the Coordinated Regional Downscaling Experiment (CORDEX) simulations. Additionally, precipitation extreme are expected to shift southward over South Asia in the future (2006-2100 as compared to 1961-2005). For instance, the Arabian Sea, south India, Myanmar, Thailand, and Malaysia are expected to have the maximum increase (~18.5 mm/day for RCP8.5 scenario) in mean extreme precipitation (average precipitation for the days with more than 99<sup>th</sup> percentile of daily precipitation). However, north and central India and Tibetan Plateau show relatively less increase (~2.7 mm/day for RCP8.5 scenario). The increase in extreme precipitation over most part of South Asia can be attributed to stronger monsoon due to increase in air temperature over Tibetan Platue and Himalayas, stronger positive Indian Ocean Dipole events, and high precipitatible water over land areas in the future. However, while analysis of moisture flux and moisture convergence at 850mb, an intense eastward shift is noticed for moisture flux (over Indian Ocean region). This shift in moisture flux along with associated changes in moisture convergence over landmass are found to intensify during days with extreme precipitation. These changes are expected to intensify the observed contrast in extreme precipitation over south and north India and shift the extreme precipitation southward over south Asia, causing more extreme precipitation events in the countries like Myanmar, Thailand, Malaysia, etc.</p><p><strong>Keywords:</strong> Extreme Precipitation; Indian Summer Monsoon; Climate Change; Indian Ocean Dipole.</p><p> </p><p><strong>Reference:</strong></p><p>Suman, M., Maity, R. (2020), Southward shift of precipitation extremes over south Asia: Evidences from CORDEX data. <em>Sci Rep</em> <strong>10, </strong>6452 (2020). https://doi.org/10.1038/s41598-020-63571-x.</p>


2010 ◽  
Vol 23 (19) ◽  
pp. 5163-5174 ◽  
Author(s):  
Suryachandra A. Rao ◽  
Hemantkumar S. Chaudhari ◽  
Samir Pokhrel ◽  
B. N. Goswami

Abstract While many of the previous positive Indian Ocean dipole (IOD) years were associated with above (below)-normal monsoon rainfall over central (southern) India during summer monsoon months [June–September (JJAS)], the IOD event in 2008 is associated with below (above)-normal rainfall in many parts of central (southern peninsular) India. Because understanding such regional organization is a key for success in regional prediction, using different datasets and atmospheric model simulations, the reasons for this abnormal behavior of the monsoon in 2008 are explored. Compared to normal positive IOD events, sea surface temperature (SST) and rainfall in the southern tropical Indian Ocean (STIO) in JJAS 2008 were abnormally high. Downwelling Rossby waves and oceanic heat advection played an important role in warming SST abnormally in the STIO. It was also found that the combined influence of a linear warming trend in the tropical Indian Ocean and warming associated with the IOD have resulted in abnormal warming of the STIO. This abnormal SST warming resulted in enhancement of convection in the southwest tropical Indian Ocean and forced anticyclonic circulation anomalies over the Bay of Bengal and central India, leading to suppressed rainfall over this region in JJAS 2008. The above mechanism is tested by conducting several model sensitivity experiments with an atmospheric general circulation model (AGCM). These experiments confirmed that the subsidence over central India and the Bay of Bengal was forced mainly by the anomalous warming in the STIO region driven by coupled ocean–atmosphere processes. This study provides the first evidence of combined Indian Ocean warming, associated with global warming, and IOD-related warming influence on Indian summer monsoon rainfall. The combined influence may force below-normal rainfall over central India by inducing strong convection in the STIO region. The conventional seesaw in convection between the Indian subcontinent and the eastern equatorial Indian Ocean may shift to the central equatorial Indian Ocean and the Bay of Bengal if the central Indian Ocean consistently warms in the global warming scenario.


2008 ◽  
Vol 3 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Kunio Yoneyama ◽  
◽  
Yukari N. Takayabu ◽  

The field experiment Mirai Indian Ocean cruise for the Study of the MJO-convection Onset (MISMO) took place in the central equatorial Indian Ocean from October to December 2006 on the research vessel Mirai. During MISMO, intensive Doppler radar, radiosonde, and other observations were conducted to collect atmospheric and oceanic features when convection associated with the intraseasonal variability was initiated. The Mirai was stationed at 2∘S-2∘N and 79∘E-82∘E from October 24 to November 25. Satellite-based cloud data analysis was used to detect convectively active intraseasonal variations in the latter half of observation, although it was weak and its eastward-propagating signal dissipated before arriving on the maritime continent. We examine the features of convective activity and related moisture variation during this stationary observation period, focusing on difference in features between convectively inactive and active periods. We confirmed that stratiform clouds played a key role in regulating moisture distribution features in the convectively active intraseasonal period.


2021 ◽  
Author(s):  
Kavirajan Rajendran ◽  
Sajani Surendran ◽  
Stella Jes Varghese ◽  
Anjali Sathyanath

Abstract We analyse the performance of global climate models of 6th generation of Coupled Model Intercomparison Project (CMIP6) in simulating climatological summer monsoon rainfall over India, interannual variability (IAV) of all-India summer monsoon rainfall (ISMR) and its teleconnections with rainfall variability over equatorial Pacific and Indian Oceans. The multimodel ensemble mean (MME) of 61 CMIP6 models shows the best skill in simulating mean monsoon rainfall over India compared to the MMEs of 6th generation atmosphere-only models (AMIP6) and the previous generations of Atmospheric and Coupled Model Intercomparison Projects (AMIPs and CMIPs). Systematic improvement and reduction in bias are evident from lower to higher AMIPs/CMIPs. Still, there exists dry bias over a narrow region of the monsoon zone of central India besides wet and cold bias over the surrounding oceans. The persistence of errors in atmosphere-only models hints that the source of errors could be with atmosphere models. Fifteen CMIP6 models selected through objective criteria, perform the best in simulating mean monsoon, IAV of ISMR, the strong inverse relationship between ISMR and Boreal summer El Nino-Southern Oscillation (ENSO), and the inverse relationship between all-India rainfall and north-west tropical Pacific rainfall in June. Several models reproduce the dipole structure of Equatorial Indian Ocean Oscillation (EQUINOO) with the centres over western and eastern equatorial Indian Ocean. But, ISMR-EQUINOO relationship in many of them is opposite to the observed. Our analysis implies the need for capturing ISMR-EQUINOO link to improve the simulation of IAV of ISMR which is crucial for reliable monsoon prediction and projection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Shi ◽  
Menghua Wang

AbstractThe 2019 positive Indian Ocean Dipole (IOD) event in the boreal autumn was the most serious IOD event of the century with reports of significant sea surface temperature (SST) changes in the east and west equatorial Indian Ocean. Observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) between 2012 and 2020 are used to study the significant biological dipole response that occurred in the equatorial Indian Ocean following the 2019 positive IOD event. For the first time, we propose, identify, characterize, and quantify the biological IOD. The 2019 positive IOD event led to anomalous biological activity in both the east IOD zone and west IOD zone. The average chlorophyll-a (Chl-a) concentration reached over ~ 0.5 mg m−3 in 2019 in comparison to the climatology Chl-a of ~ 0.3 mg m−3 in the east IOD zone. In the west IOD zone, the biological activity was significantly depressed. The depressed Chl-a lasted until May 2020. The anomalous ocean biological activity in the east IOD zone was attributed to the advection of the higher-nutrient surface water due to enhanced upwelling. On the other hand, the dampened ocean biological activity in the west IOD zone was attributed to the stronger convergence of the surface waters than that in a normal year.


Sign in / Sign up

Export Citation Format

Share Document