Do deep convection control the long-term variability of the Atlantic Meridional Overturning Circulation?

Author(s):  
Daria Kuznetcova ◽  
Anna Mamadzhanian

<p>Atlantic Meridional Overturning Circulation (AMOC) contribute to long-term climate variability of Northern Hemisphere. The North Atlantic Ocean carries 25% of global heat transferred tropics to polar latitudes of the Northern Hemisphere (Srokosz, 2012). In the subpolar seas of the North Atlantic water goes down in few localized areas to deep convection, where all Atlantic deep water masses are formed. This process pumps a huge amount of CO2 to the deep ocean, which have strong consequence for global climate (Buckley and Marshall, 2016; Kuhlbrodt, 2007). The water comes back to the surface mainly in upwelling regions of the Southern Ocean (Toggweiler and Samuels 1998, Delworth and Zeng, 2008), as well as in the tropics due to vertical mixing.</p><p>In this study we try to link the long-term variability of the AMOC to it’s main driving mechanisms: the deep ocean convection in the Greenland, the Labrador and the Irminger seas, and to wind driven upwelling in the Southern Ocean.</p><p>As a reference for the AMOC intensity on the decadal and longer time scales, we use AMOC indexes from several studies (Caesar, 2018; Chen and Tung, 2018), which extend the time series back to the 1950s. The intensity of deep convection (IC) over the same time period is computed using convection index (Bashmacnikov et al., 2019). Wind-driving upwelling in the Southern Ocean is computed through evaluation of the divergence of Ekman fluxes (ED), using the wind velocity from atmospheric reanalysis (ERA 40 1957-1979 and ERA-Interim 1980-2016).</p><p>To estimate contribution of each of the forcing factors to the temporal variability of the AMOC, were used cross-correlation and regression analyses with varying time lags. The biggest cross-correlation coefficient was found with the IC in the Greenland Sea, the negative lags indicate that it is the AMOC, which affects the variability of convection intensity. The second largest cross-correlation coefficient was found with the IC in the Labrador Sea (0.7) with the lag of 13 years. The maximum cross-correlation with the IC in the Irminger Sea was 0.6 on a narrow interval of the time lags. The ED in Southern ocean demonstrate a significant correlation with the AMOC, with the correlation coefficient of 0.5 at the time lag of 15 years.</p><p>The contributions of each of the control mechanisms to temporal variability of the AMOC were investigated by the regression analysis for the time lags at which the maximum cross-correlations of each of the parameters are obtained. As a result the maximum regression coefficient was obtained for the IC in the Irminger Sea (0.65), the second one for the ED (0.35) using the time lags of 9 and 25 years, respectively. The regression coefficient for the IC in the Labrador Sea did not exceed 0.2 for all tested time lags. The physical mechanism, connecting the variability of the AMOC intensity to these two control mechanisms is a subject of our further research.</p><p>The work was supported by a grant from the Russian science Foundation (project No. 17-17-01151)</p>

2020 ◽  
Author(s):  
Meir Abelson ◽  
Jonathan Erez

<p>A compilation of benthic δ<sup>18</sup>O from the whole Atlantic and the Southern Ocean (Atlantic sector), shows two major jumps in the interbasinal gradient of d<sup>18</sup>O (Δδ<sup>18</sup>O) during the Eocene and the Oligocene: One at ~40 Ma and the second concomitant with the isotopic event of the Eocene-Oligocene transition (EOT), ~33.7 Ma ago. From previously published circulation models, we show that the first Δδ<sup>18</sup>O jump reflects the thermal isolation of Antarctica associated with the proto-Antarctic circumpolar current (ACC). The second marks the onset of interhemispheric northern-sourced circulation cell, similar to the modern Atlantic meridional overturning circulation (AMOC). The onset of AMOC-like circulation probably slightly preceded (100-300 ky) the EOT, as we show by the high resolution profiles of δ<sup>18</sup>O and δ<sup>13</sup>C previously published from DSDP/ODP sites in the Southern Ocean and South Atlantic. We suggest that while the shallow proto-ACC supplied the energy for deep ocean convection in the Southern Hemisphere, the onset of the interhemispheric northern circulation cell was due to the significant EOT intensification of deepwater formation in the North Atlantic driven by the Nordic anti-estuarine circulation. This onset of the interhemispheric northern-sourced circulation cell could have prompted the EOT global cooling.</p>


2012 ◽  
Vol 25 (17) ◽  
pp. 5830-5844 ◽  
Author(s):  
Sarah G. Purkey ◽  
Gregory C. Johnson

Abstract A statistically significant reduction in Antarctic Bottom Water (AABW) volume is quantified between the 1980s and 2000s within the Southern Ocean and along the bottom-most, southern branches of the meridional overturning circulation (MOC). AABW has warmed globally during that time, contributing roughly 10% of the recent total ocean heat uptake. This warming implies a global-scale contraction of AABW. Rates of change in AABW-related circulation are estimated in most of the world’s deep-ocean basins by finding average rates of volume loss or gain below cold, deep potential temperature (θ) surfaces using all available repeated hydrographic sections. The Southern Ocean is losing water below θ = 0°C at a rate of −8.2 (±2.6) × 106 m3 s−1. This bottom water contraction causes a descent of potential isotherms throughout much of the water column until a near-surface recovery, apparently through a southward surge of Circumpolar Deep Water from the north. To the north, smaller losses of bottom waters are seen along three of the four main northward outflow routes of AABW. Volume and heat budgets below deep, cold θ surfaces within the Brazil and Pacific basins are not in steady state. The observed changes in volume and heat of the coldest waters within these basins could be accounted for by small decreases to the volume transport or small increases to θ of their inflows, or fractional increases in deep mixing. The budget calculations and global contraction pattern are consistent with a global-scale slowdown of the bottom, southern limb of the MOC.


2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2013 ◽  
Vol 9 (2) ◽  
pp. 935-953 ◽  
Author(s):  
M. Kageyama ◽  
U. Merkel ◽  
B. Otto-Bliesner ◽  
M. Prange ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.


2021 ◽  
Author(s):  
Markus Jochum ◽  
Zanna Chase ◽  
Roman Nutermn ◽  
Joel Pedro ◽  
Sune Rasmussen ◽  
...  

<p>We use a LGM setup of the CESM with marine and terrestrial biogeochemistry. This free-running  set-up (i.e., no freshwater hosing) exhibts Dansgaard-Oeschger events and Antarctic Isotope Maxima with time-lags and amplitudes that are consistent with paleo reconstructions. The CO2 signal associated DO events is also consistent with reconstructions: a 10 ppm/kyr increase during stadials, with the increase continuing some 400 years after Antarctica has started to cool again. An analysis of the modelled air-sea/land carbon fluxes reveals that some 3ppm of the stadial increase are due to shifting rain and temperature patterns that reduce growth of land vegetation. This adjustment is largely concluded after 3 centuries. The remainder of the signal is due to reduced ocean uptake. It turns out that reduced subduction of carbon in the Southern Ocean is mostly compensated by reduced upwelling in the equatorial oceans. Thus, as found in previous studies, much of the extra carbon is due to reduced uptake in the North Atlantic, partly directly due to reduced deep convection, and partly due to a reduced biological productivity because much of the North Atlantic nutrients are supplied by the AMOC. A big surprise is the emergence of the North Pacific as a major contributor to the changes in the air-fluxes of carbon. It is the reorganization of its wind-driven circulation that explains why global net-outgassing of carbon continues long after the interstadial has begun.</p>


2021 ◽  
Author(s):  
Nadine Goris ◽  
Jerry Tjiputra ◽  
Are Ohlsen ◽  
Jörg Schwinger ◽  
Siv Lauvset ◽  
...  

<p>As one of the major carbon sinks in the global ocean, the North Atlantic is a key player in mediating and ameliorating the ongoing global warming. Projections of the North Atlantic carbon sink in a high-CO<sub>2</sub> future vary greatly among models, with some showing that a slowdown in carbon uptake has already begun and others predicting that this slowdown will not occur until nearly 2100.</p><p>Discrepancies among models largely originate because of differences in the efficiency of the high-latitude transport of carbon from the surface to the deep ocean. This transport occurs through biological production, deep convection and subsequent transport via the deep western boundary current. For an ensemble of 11 CMIP5-models, we studied the efficiency of this transport and identified two indicators of contemporary model behavior that are highly correlated with a model´s projected future carbon-uptake. The first indicator is the high latitude summer pCO<sub>2</sub><sup>sea</sup>-anomaly of a model, which is tightly linked to winter mixing and nutrient supply, but also to deep convection. The second indicator is the fraction of the anthropogenic carbon-inventory stored below 1000-m depth, indicating how efficient carbon is transported into the deep ocean. By comparing to the observational database, these indicators allow us to better constrain the model ensemble, and demonstrate that the models with more efficient surface to deep transport are best aligned with current observations. These models also show the largest future North Atlantic carbon uptake, which we then conclude is the more plausible future evolution. We further study if the high correlations between our contemporary indicators and a model´s future North Atlantic carbon uptake is also upheld for the next model generation, CMIP6. We hypothesize that this is the case and that our indicators can not only help us to constrain the CMIP6 model ensemble but also inform us about progress made between CMIP5 and CMIP6 in terms of North Atlantic carbon uptake, winter mixing, nutrient supply, deep convection and transport of carbon into the deep ocean.</p>


2019 ◽  
Vol 15 (5) ◽  
pp. 1691-1713 ◽  
Author(s):  
Stephen J. Hunter ◽  
Alan M. Haywood ◽  
Aisling M. Dolan ◽  
Julia C. Tindall

Abstract. We present the UK's input into the Pliocene Model Intercomparison Project phase 2 (PlioMIP2) using the Hadley Centre Climate Model version 3 (HadCM3). The 400 ppm CO2 Pliocene experiment has a mean annual surface air temperature that is 2.9 ∘C warmer than the pre-industrial and a polar amplification of between 1.7 and 2.2 times the global mean warming. The Pliocene Research Interpretation and Synoptic Mapping (PRISM4) enhanced Pliocene palaeogeography accounts for a warming of 1.4 ∘C, whilst the CO2 increase from 280 to 400 ppm leads to a further 1.5 ∘C of warming. Climate sensitivity is 3.5 ∘C for the pre-industrial and 2.9 ∘C for the Pliocene. Precipitation change between the pre-industrial and Pliocene is complex, with geographic and land surface changes primarily modifying the geographical extent of mean annual precipitation. Sea ice fraction and areal extent are reduced during the Pliocene, particularly in the Southern Hemisphere, although they persist through summer in both hemispheres. The Pliocene palaeogeography drives a more intense Pacific and Atlantic meridional overturning circulation (AMOC). This intensification of AMOC is coincident with more widespread deep convection in the North Atlantic. We conclude by examining additional sensitivity experiments and confirm that the choice of total solar insolation (1361 vs. 1365 Wm−2) and orbital configuration (modern vs. 3.205 Ma) does not significantly influence the anomaly-type analysis in use by the Pliocene community.


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1247-1264 ◽  
Author(s):  
Lena M. Schulze Chretien ◽  
Eleanor Frajka-Williams

Abstract. The Labrador Sea is one of a small number of deep convection sites in the North Atlantic that contribute to the meridional overturning circulation. Buoyancy is lost from surface waters during winter, allowing the formation of dense deep water. During the last few decades, mass loss from the Greenland ice sheet has accelerated, releasing freshwater into the high-latitude North Atlantic. This and the enhanced Arctic freshwater export in recent years have the potential to add buoyancy to surface waters, slowing or suppressing convection in the Labrador Sea. However, the impact of freshwater on convection is dependent on whether or not it can escape the shallow, topographically trapped boundary currents encircling the Labrador Sea. Previous studies have estimated the transport of freshwater into the central Labrador Sea by focusing on the role of eddies. Here, we use a Lagrangian approach by tracking particles in a global, eddy-permitting (1/12∘) ocean model to examine where and when freshwater in the surface 30 m enters the Labrador Sea basin. We find that 60 % of the total freshwater in the top 100 m enters the basin in the top 30 m along the eastern side. The year-to-year variability in freshwater transport from the shelves to the central Labrador Sea, as found by the model trajectories in the top 30 m, is dominated by wind-driven Ekman transport rather than eddies transporting freshwater into the basin along the northeast.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefanie Semper ◽  
Robert S. Pickart ◽  
Kjetil Våge ◽  
Karin Margretha H. Larsen ◽  
Hjálmar Hátún ◽  
...  

Abstract Dense water from the Nordic Seas passes through the Faroe Bank Channel and supplies the lower limb of the Atlantic Meridional Overturning Circulation, a critical component of the climate system. Yet, the upstream pathways of this water are not fully known. Here we present evidence of a previously unrecognised deep current following the slope from Iceland toward the Faroe Bank Channel using high-resolution, synoptic shipboard observations and long-term measurements north of the Faroe Islands. The bulk of the volume transport of the current, named the Iceland-Faroe Slope Jet (IFSJ), is relatively uniform in hydrographic properties, very similar to the North Icelandic Jet flowing westward along the slope north of Iceland toward Denmark Strait. This suggests a common source for the two major overflows across the Greenland-Scotland Ridge. The IFSJ can account for approximately half of the total overflow transport through the Faroe Bank Channel, thus constituting a significant component of the overturning circulation in the Nordic Seas.


2018 ◽  
Vol 31 (18) ◽  
pp. 7459-7479 ◽  
Author(s):  
Jia-Rui Shi ◽  
Shang-Ping Xie ◽  
Lynne D. Talley

Ocean uptake of anthropogenic heat over the past 15 years has mostly occurred in the Southern Ocean, based on Argo float observations. This agrees with historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), where the Southern Ocean (south of 30°S) accounts for 72% ± 28% of global heat uptake, while the contribution from the North Atlantic north of 30°N is only 6%. Aerosols preferentially cool the Northern Hemisphere, and the effect on surface heat flux over the subpolar North Atlantic opposes the greenhouse gas (GHG) effect in nearly equal magnitude. This heat uptake compensation is associated with weakening (strengthening) of the Atlantic meridional overturning circulation (AMOC) in response to GHG (aerosol) radiative forcing. Aerosols are projected to decline in the near future, reinforcing the greenhouse effect on the North Atlantic heat uptake. As a result, the Southern Ocean, which will continue to take up anthropogenic heat largely through the mean upwelling of water from depth, will be joined by increased relative contribution from the North Atlantic because of substantial AMOC slowdown in the twenty-first century. In the RCP8.5 scenario, the percentage contribution to global uptake is projected to decrease to 48% ± 8% in the Southern Ocean and increase to 26% ± 6% in the northern North Atlantic. Despite the large uncertainty in the magnitude of projected aerosol forcing, our results suggest that anthropogenic aerosols, given their geographic distributions and temporal trajectories, strongly influence the high-latitude ocean heat uptake and interhemispheric asymmetry through AMOC change.


Sign in / Sign up

Export Citation Format

Share Document