scholarly journals Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

2013 ◽  
Vol 26 (5) ◽  
pp. 1685-1701 ◽  
Author(s):  
Vassilis P. Papadopoulos ◽  
Yasser Abualnaja ◽  
Simon A. Josey ◽  
Amy Bower ◽  
Dionysios E. Raitsos ◽  
...  

Abstract The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

2011 ◽  
Vol 24 (24) ◽  
pp. 6283-6306 ◽  
Author(s):  
Ivana Cerovečki ◽  
Lynne D. Talley ◽  
Matthew R. Mazloff

Abstract The authors have intercompared the following six surface buoyancy flux estimates, averaged over the years 2005–07: two reanalyses [the recent ECMWF reanalysis (ERA-Interim; hereafter ERA), and the National Centers for Environmental Prediction (NCEP)–NCAR reanalysis 1 (hereafter NCEP1)], two recent flux products developed as an improvement of NCEP1 [the flux product by Large and Yeager and the Southern Ocean State Estimate (SOSE)], and two ad hoc air–sea flux estimates that are obtained by combining the NCEP1 or ERA net radiative fluxes with turbulent flux estimates using the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk formulas with NCEP1 or ERA input variables. The accuracy of SOSE adjustments of NCEP1 atmospheric fields (which SOSE uses as an initial guess and a constraint) was assessed by verification that SOSE reduces the biases in the NCEP1 fluxes as diagnosed by the Working Group on Air–Sea Fluxes (Taylor), suggesting that oceanic observations may be a valuable constraint to improve atmospheric variables. Compared with NCEP1, both SOSE and Large and Yeager increase the net ocean heat loss in high latitudes, decrease ocean heat loss in the subtropical Indian Ocean, decrease net evaporation in the subtropics, and decrease net precipitation in polar latitudes. The large-scale pattern of SOSE and Large and Yeager turbulent heat flux adjustment is similar, but the magnitude of SOSE adjustments is significantly larger. Their radiative heat flux adjustments patterns differ. Turbulent heat fluxes determined by combining COARE bulk formulas with NCEP1 or ERA should not be combined with unmodified NCEP1 or ERA radiative fluxes as the net ocean heat gain poleward of 25°S becomes unrealistically large. The other surface flux products (i.e., NCEP1, ERA, Large and Yeager, and SOSE) balance more closely. Overall, the statistical estimates of the differences between the various air–sea heat flux products tend to be largest in regions with strong ocean mesoscale activity such as the Antarctic Circumpolar Current and the western boundary currents.


2019 ◽  
Vol 36 (9) ◽  
pp. 1849-1861
Author(s):  
Vidhi Bharti ◽  
Eric Schulz ◽  
Christopher W. Fairall ◽  
Byron W. Blomquist ◽  
Yi Huang ◽  
...  

Given the large uncertainties in surface heat fluxes over the Southern Ocean, an assessment of fluxes obtained by European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) product, the Australian Integrated Marine Observing System (IMOS) routine observations, and the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project hybrid dataset is performed. The surface fluxes are calculated using the COARE 3.5 bulk algorithm with in situ data obtained from the NOAA Physical Sciences Division flux system during the Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment on board the R/V Investigator during a voyage (March–April 2016) in the Australian sector of the Southern Ocean (43°–53°S). ERA-Interim and OAFlux data are further compared with the Southern Ocean Flux Station (SOFS) air–sea flux moored surface float deployed for a year (March 2015–April 2016) at ~46.7°S, 142°E. The results indicate that ERA-Interim (3 hourly at 0.25°) and OAFlux (daily at 1°) estimate sensible heat flux H s accurately to within ±5 W m−2 and latent heat flux H l to within ±10 W m−2. ERA-Interim gives a positive bias in H s at low latitudes (<47°S) and in H l at high latitudes (>47°S), and OAFlux displays consistently positive bias in H l at all latitudes. No systematic bias with respect to wind or rain conditions was observed. Although some differences in the bulk flux algorithms are noted, these biases can be largely attributed to the uncertainties in the observations used to derive the flux products.


Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 149 ◽  
Author(s):  
Andreas C. Dimitriou ◽  
Niki Chartosia ◽  
Jason M. Hall-Spencer ◽  
Periklis Kleitou ◽  
Carlos Jimenez ◽  
...  

Widespread reports over the last six years confirm the establishment of lionfish (Pterois miles) populations in the eastern Mediterranean. Accumulated knowledge on lionfish invasions in the western Atlantic Ocean has shown that it is a successful invader and can have negative impacts on native species, indirect ecological repercussions and economic effects on local human societies. Here we analysed genetic sequences of lionfish from Cyprus as well as data from the whole distribution of the species, targeting the mtDNA markers cytochrome c oxidase subunit 1 (COI) and the control region (CR). Our results reflect a pattern of repeated introductions into the Mediterranean from the northern Red Sea and a secondary spread of this species west to Rhodes and Sicily. Presented results agree with previously published studies highlighting the genetic similarity with individuals from the northern Red Sea. Nevertheless, some individuals from Cyprus, in addition to those coming via the Suez Canal, were genetically similar to fish from the Indian Ocean, indicating genetic homogeneity among populations of P. miles across its current distribution, possibly facilitated by the ornamental fish trade and/or transport through ballast water.


2005 ◽  
Vol 18 (15) ◽  
pp. 2864-2882 ◽  
Author(s):  
J. C. Hermes ◽  
C. J. C. Reason

Abstract A global ocean model (ORCA2) forced with 50 yr of NCEP–NCAR reanalysis winds and heat fluxes has been used to investigate the evolution and forcing of interannual dipolelike sea surface temperature (SST) variability in the South Indian and South Atlantic Oceans. Although such patterns may also exist at times in only one of these basins and not the other, only events where there are coherent signals in both basins during the austral summer have been chosen for study in this paper. A positive (negative) event occurs when there is a significant warm (cool) SST anomaly evident in the southwest of both the South Indian and South Atlantic Oceans and a cool (warm) anomaly in the eastern subtropics. The large-scale forcing of these events appears to consist of a coherent modulation of the wavenumber-3 or -4 pattern in the Southern Hemisphere atmospheric circulation such that the semipermanent subtropical anticyclone in each basin is shifted from its summer mean position and its strength is modulated. A relationship to the Antarctic Oscillation is also apparent, and seems to strengthen after the mid-1970s. The modulated subtropical anticyclones lead to changes in the tropical easterlies and midlatitude westerlies in the South Atlantic and South Indian Oceans that result in anomalies in latent heat fluxes, upwelling, and Ekman heat transports, all of which contribute to the SST variability. In addition, there are significant modulations to the strong Rossby wave signals in the South Indian Ocean. The results of this study confirm the ability of the ORCA2 model to represent these dipole patterns and indicate connections between large-scale modulations of the Southern Hemisphere midlatitude atmospheric circulation and coevolving SST variability in the South Atlantic and South Indian Oceans.


2014 ◽  
Vol 15 (3) ◽  
pp. 921-937 ◽  
Author(s):  
Donghai Zheng ◽  
Rogier van der Velde ◽  
Zhongbo Su ◽  
Martijn J. Booij ◽  
Arjen Y. Hoekstra ◽  
...  

ABSTRACT Current land surface models still have difficulties with producing reliable surface heat fluxes and skin temperature (Tsfc) estimates for high-altitude regions, which may be addressed via adequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. In this study, the performance of various z0h and z0m schemes developed for the Noah land surface model is assessed for a high-altitude site (3430 m) on the northeastern part of the Tibetan Plateau. Based on the in situ surface heat fluxes and profile measurements of wind and temperature, monthly variations of z0m and diurnal variations of z0h are derived through application of the Monin–Obukhov similarity theory. These derived values together with the measured heat fluxes are utilized to assess the performance of those z0m and z0h schemes for different seasons. The analyses show that the z0m dynamics are related to vegetation dynamics and soil water freeze–thaw state, which are reproduced satisfactorily with current z0m schemes. Further, it is demonstrated that the heat flux simulations are very sensitive to the diurnal variations of z0h. The newly developed z0h schemes all capture, at least over the sparse vegetated surfaces during the winter season, the observed diurnal variability much better than the original one. It should, however, be noted that for the dense vegetated surfaces during the spring and monsoon seasons, not all newly developed schemes perform consistently better than the original one. With the most promising schemes, the Noah simulated sensible heat flux, latent heat flux, Tsfc, and soil temperature improved for the monsoon season by about 29%, 79%, 75%, and 81%, respectively. In addition, the impact of Tsfc calculation and energy balance closure associated with measurement uncertainties on the above findings are discussed, and the selection of the appropriate z0h scheme for applications is addressed.


2006 ◽  
Vol 19 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Xiaoqing Wu ◽  
Stephen Guimond

Abstract Two-dimensional (2D) and three-dimensional (3D) cloud-resolving model (CRM) simulations are conducted to quantify the enhancement of surface sensible and latent heat fluxes by tropical precipitating cloud systems for 20 days (10–30 December 1992) during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The mesoscale enhancement appears to be analogous across both 2D and 3D CRMs, with the enhancement for the sensible heat flux accounting for 17% of the total flux for each model and the enhancement for the latent heat flux representing 18% and 16% of the total flux for 2D and 3D CRMs, respectively. The convection-induced gustiness is mainly responsible for the enhancement observed in each model simulation. The parameterization schemes of the mesoscale enhancement by the gustiness in terms of convective updraft, downdraft, and precipitation, respectively, are examined using each version of the CRM. The scheme utilizing the precipitation was found to yield the most desirable estimations of the mean fluxes with the smallest rms error. The results together with previous findings from other studies suggest that the mesoscale enhancement of surface heat fluxes by the precipitating deep convection is a subgrid process apparent across various CRMs and is imperative to incorporate into general circulation models (GCMs) for improved climate simulation.


2020 ◽  
Author(s):  
Yaoming Ma

&lt;p&gt;The exchange of heat and water vapor between land surface and atmosphere over the Third Pole region (Tibetan Plateau and nearby surrounding region) plays an important role in Asian monsoon, westerlies and the northern hemisphere weather and climate systems. Supported by various agencies in the People&amp;#8217;s Republic of China, a Third Pole Environment (TPE) observation and research Platform (TPEORP) is now implementing over the Third Pole region. The background of the establishment of the TPEORP, the establishing and monitoring plan of long-term scale (5-10 years) of it will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface energy fluxes partitioning and the turbulent characteristics will also been shown in this study. Then, the parameterization methodology based on satellite data and the atmospheric boundary layer (ABL) observations has been proposed and tested for deriving regional distribution of net radiation flux, soil heat flux, sensible heat flux and latent heat flux (evapotranspiration (ET)) and their variation trends over the heterogeneous landscape of the Tibetan Plateau (TP) area. To validate the proposed methodology, the ground measured net radiation flux, soil heat flux, sensible heat flux and latent heat flux of the TPEORP are compared to the derived values. The results showed that the derived land surface heat fluxes over the study areas are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface feature. And the estimated land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference in less than 10% in the validation sites. The sensible heat flux has increased slightly and the latent heat flux has decreased from 2001 to 2016 over the TP. It is therefore conclude that the proposed methodology is successful for the retrieval of land surface heat fluxes and ET over heterogeneous landscape of the TP area. Further improvement of the methodology and its applying field over the whole Third Pole region and Pan-Third Pole region were also discussed.&lt;/p&gt;


2020 ◽  
Author(s):  
Rei Chemke ◽  
Lorenzo Polvani

&lt;p&gt;The weakening of the Hadley cell and of the midlatitude eddy heat fluxes are two of the most robust responses of the atmospheric circulation to increasing concentrations of greenhouse gases.&amp;#160; These changes have important global climatic impacts, as the large-scale circulation acts to transfer heat and moisture from the tropics to polar regions.&amp;#160; Here, we examine Hadley cell and eddy heat flux trends in recent decades: contrasting model simulations with reanalyses, we uncover two important flaws -- one in the reanalyses and other in the model simulations -- that have, to date, gone largely unnoticed.&lt;br&gt;&lt;br&gt;First, we find that while climate models simulate a weakening of the Hadley cell over the past four decades, most atmospheric reanalyses indicate a considerable strengthening.&amp;#160; Interestingly, that discrepancy does not stem from biases in climate models, but appears to be related to artifacts in the representation of latent heating in the reanalyses.&amp;#160; This suggests that when dealing with the divergent part of the large-scale circulation, reanalyses may be fundamentally unreliable for the calculation of trends, even for trends spanning several decades.&lt;br&gt;&lt;br&gt;Second, we examine recent trends in eddy heat fluxes at midlatitudes, which are directly linked the equator-to-pole temperature gradient.&amp;#160; In the Northern Hemisphere models and reanalyses are in good agreement. In the Southern Hemisphere, however, models show a weakening while reanalyses indicate a robust strengthening.&amp;#160; In this case, the flaw is found to be with the climate models, which are unable to simulate the observed multidecadal cooling of the Southern Ocean at high-latitudes, and the accompanying increase in sea-ice.&amp;#160; While the biases in modeled Antarctic sea ice trends have been widely reported, our results demonstrates that such biases have important implications well beyond the high Southern latitudes, as they impact the equator-to-pole temperature and, as a consequence, the midlatitude atmospheric circulation.&lt;/p&gt;


2020 ◽  
Vol 33 (17) ◽  
pp. 7233-7253 ◽  
Author(s):  
Yuanlong Li ◽  
Weiqing Han ◽  
Fan Wang ◽  
Lei Zhang ◽  
Jing Duan

AbstractMulti-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.


Sign in / Sign up

Export Citation Format

Share Document