scholarly journals Autumn Sea Ice Cover, Winter Northern Hemisphere Annular Mode, and Winter Precipitation in Eurasia

2012 ◽  
Vol 26 (11) ◽  
pp. 3968-3981 ◽  
Author(s):  
Fei Li ◽  
Huijun Wang

Abstract This paper examines the impacts of the previous autumn sea ice cover (SIC) on the winter Northern Hemisphere annular mode (NAM) and winter precipitation in Eurasia. The coherent variations among the Kara–Laptev autumn SIC, winter NAM, and Eurasian winter precipitation appear after the year 1982, which may prove useful for seasonal prediction of winter precipitation. From a physical point of view, the Kara–Laptev SIC and sea surface temperature (SST) anomalies develop in autumn and remain in winter. Given that winter NAM is characterized by an Arctic–midlatitude seesaw centered over the Barents Sea and Kara–Laptev Seas, it is closely linked to the Arctic forcing that corresponds to the Kara–Laptev sea ice increase (reduction) and the associated surface temperature cooling (warming). Moreover, based on both model simulations and observations, the diminishing Kara–Laptev sea ice does induce positive sea level pressure (SLP) anomalies over high-latitude Eurasia in winter, which is accompanied by a significant surface warming in northern Eurasia and cooling south of the Mediterranean. This surface air temperature (SAT) anomaly pattern facilitates increases of specific humidity in northern Eurasia with a major ridge extending southward along the East Asian coast. As a result, the anomalous Eurasian winter precipitation has a more zonal band structure.

2002 ◽  
Vol 34 ◽  
pp. 420-428 ◽  
Author(s):  
Josefino C. Comiso

AbstractCo-registered and continuous satellite data of sea-ice concentrations and surface ice temperatures from 1981 to 2000 are analyzed to evaluate relationships between these two critical climate parameters and what they reveal in tandem about the changing Arctic environment. During the 19 year period, the Arctic ice extent and actual ice area are shown to be declining at a rate of –2.0±0.3% dec –1 and 3.1 ±0.4% dec–1, respectively, while the surface ice temperature has been increasing at 0.4 ±0.2 K dec–1, where dec is decade. The extent and area of the perennial ice cover, estimated from summer minimum values, have been declining at a much faster rate of –6.7±2.4% dec–1 and –8.3±2.4% dec–1, respectively, while the surface ice temperature has been increasing at 0.9 ±0.6K dec–1. This unusual rate of decline is accompanied by a very variable summer ice cover in the 1990s compared to the 1980s, suggesting increases in the fraction of the relatively thin second-year, and hence a thinning in the perennial, ice cover during the last two decades. Yearly anomaly maps show that the ice-concentration anomalies are predominantly positive in the 1980s and negative in the 1990s, while surface temperature anomalies were mainly negative in the 1980s and positive in the 1990s. The yearly ice-concentration and surface temperature anomalies are highly correlated, indicating a strong link especially in the seasonal region and around the periphery of the perennial ice cover. The surface temperature anomalies also reveal the spatial scope of each warming (or cooling) phenomenon that usually extends beyond the boundaries of the sea-ice cover.


2006 ◽  
Vol 52 (178) ◽  
pp. 433-439 ◽  
Author(s):  
Larissa Nazarenko ◽  
Nickolai Tausnev ◽  
James Hansen

AbstractUsing a global climate model coupled with an ocean and a sea-ice model, we compare the effects of doubling CO2 and halving CO2 on sea-ice cover and connections with the atmosphere and ocean. An overall warming in the 2 × CO2 experiment causes reduction of sea-ice extent by 15%, with maximum decrease in summer and autumn, consistent with observed seasonal sea-ice changes. The intensification of the Northern Hemisphere circulation is reflected in the positive phase of the Arctic Oscillation (AO), associated with higher-than-normal surface pressure south of about 50° N and lower-than-normal surface pressure over the high northern latitudes. Strengthening the polar cell causes enhancement of westerlies around the Arctic perimeter during winter. Cooling, in the 0.5 × CO2 experiment, leads to thicker and more extensive sea ice. In the Southern Hemisphere, the increase in ice-covered area (28%) dominates the ice-thickness increase (5%) due to open ocean to the north. In the Northern Hemisphere, sea-ice cover increases by only 8% due to the enclosed land/sea configuration, but sea ice becomes much thicker (108%). Substantial weakening of the polar cell due to increase in sea-level pressure over polar latitudes leads to a negative trend of the winter AO index. The model reproduces large year-to-year variability under both cooling and warming conditions.


2001 ◽  
Vol 33 ◽  
pp. 457-473 ◽  
Author(s):  
Josefino C. Comiso

AbstractRecent observations of a decreasing ice extent and a possible thinning of the ice cover in the Arctic make it imperative that detailed studies of the current Arctic environment are made, especially since the region is known to be highly sensitive to a potential change in climate. A continuous dataset of microwave, thermal infrared and visible satellite data has been analyzed for the first time to concurrently study in spatial detail the variability of the sea-ice cover, surface temperature, albedo and cloud statistics in the region from 1987 to 1998. Large warming anomalies during the last four years (i.e. 1995−98) are indeed apparent and spatially more extensive than previous years. The largest surface temperature anomaly occurred in 1998, but this was confined mainly to the western Arctic and the North American continent, while cooling occurred in other areas. The albedo anomalies show good coherence with the sea-ice concentration anomalies except in the central region, where periodic changes in albedo are observed, indicative of interannual changes in duration and areal extent of melt ponding and snow-free ice cover. The cloud-cover anomalies are more difficult to interpret, but are shown to be well correlated with the expected warming effects of clouds on the sea-ice surface. The results from trend analyses of the data are consistent with a general warming trend and an ice-cover retreat that appear to be even larger during the last dozen years than those previously reported.


Author(s):  
Josefino C. Comiso

The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at −3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.


2020 ◽  
Author(s):  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
Anni Zhao ◽  
Chris Brierley ◽  

<p>The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to CMIP6 is the Tier 1 lig127k experiment, designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models and following a common experimental protocol. We present a multi-model ensemble of 17 climate models, all of which (except for two) have also completed the CMIP6 DECK experiments. The Equilibrium Climate Sensitivity (ECS) of these models varies from 2.1 to 5.3°C. The seasonal character of the insolation anomalies results in strong warming over the Northern Hemisphere (NH) continents in the lig127k ensemble as compared to the piControl in June-July-August and a much-reduced minimum (August-September) summer sea ice extent in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation and areal extent in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than midHolocene simulations as expected from the larger insolation anomalies at 127 ka than 6 ka.</p><p>New syntheses for surface temperature and precipitation, targeted for 127ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and precipitation over the Northern Hemisphere continents. The model-data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the specified boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions.</p><p>The CMIP6-PMIP4 lig127k simulations, in combination with the proxy record, have potential implications for confidence in future projections of monsoons, surface temperature, Arctic sea ice, and the stability of the Greenland ice sheet.</p>


Changes of the extent of the Arctic Ocean sea-ice cover over the past century, the geological record of the Arctic Ocean seafloor of the youngest geological past, as well as the evidence of a pre-Glacial temperate to warm Arctic Ocean during Mesozoic and Palaeogene time are witnesses of dramatic revolutions of the Arctic oceanography. The climate over northwestern Europe on a regional scale as well as the global environment have responded to these revolutions instantly over geological time scales. Results of ocean drilling in the deep northern North Atlantic document an onset of Northern Hemisphere glaciation towards the end of the middle Miocene (10-14 Ma). While the available evidence points to early glaciations of modest extent and intensity centred around southern Greenland, the early to mid-Pliocene intervals record a sudden intensification of ice-rafting in the Labrador and Norwegian Greenland seas as well as in the Arctic Ocean proper. The Greenland ice cap seems to have remained rather stable whereas the northwest European ice shields have experienced rapid and dramatic changes leading to their frequent complete destruction. Many sediment properties seem to suggest that orbital parameters (Milankovitch-frequencies) and their temporal variability control important properties of the deep-sea floor depositional environment. Obliquity (with approximately 40 ka) seems to be dominant in pre-Glacial (middle Miocene) as well as Glacial (post late Miocene) scenarios whereas eccentricity (with approximately 100 ka) only dominated the past 600-800 ka. PlioPleistocene deposits of the Arctic Ocean proper, of the entire Norwegian Greenland and of the Labrador seas have recorded the almost continuous presence of sea-ice cover with only short ‘interglacial’ intervals when the eastern Norwegian Sea was ice-free. The documentation of long-term changes of the oceanographic and climatic properties of the Arctic environments recorded in the sediment cover of the deepsea floors might also serve to explain scenarios which have no modern analog, but which might well develop in the future under the influence of the anthropogenic drift towards warmer global climates.


2020 ◽  
Author(s):  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
Anni Zhao ◽  
Chris Brierley ◽  
Yarrow Axford ◽  
...  

Abstract. The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to CMIP6 is the Tier 1 lig127k experiment, designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models and following a common experimental protocol. We present a multi-model ensemble of 17 climate models, all of which (except for two) have also completed the CMIP6 DECK experiments. The Equilibrium Climate Sensitivity (ECS) of these models varies from 2.1 to 5.6 °C. The seasonal character of the insolation anomalies results in strong warming over the Northern Hemisphere (NH) continents in the lig127k ensemble as compared to the piControl in June–July–August and a much-reduced minimum (August–September) summer sea ice extent in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation and areal extent in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than midHolocene simulations as expected from the larger insolation anomalies at 127 ka than 6 ka. New syntheses for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and precipitation over the Northern Hemisphere continents. The model-data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the specified boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions. The CMIP6-PMIP4 lig127k simulations, in combination with the proxy record, have potential implications for confidence in future projections of monsoons, surface temperature, Arctic sea ice, and the stability of the Greenland ice sheet.


2016 ◽  
Vol 29 (8) ◽  
pp. 2869-2888 ◽  
Author(s):  
Srdjan Dobricic ◽  
Elisabetta Vignati ◽  
Simone Russo

Abstract The ongoing shrinkage of the Arctic sea ice cover is likely linked to the global temperature rise, the pronounced warming in the Arctic, and possibly weather anomalies in the midlatitudes. By evaluating independent components of global atmospheric energy anomalies in winters from 1980 to 2015, the study finds the link between the sea ice melting in the Arctic and the combination of only three well-known atmospheric oscillation patterns approximating observed spatial variations of near-surface temperature trends in winter. The three patterns are the North Atlantic Oscillation (NAO), Scandinavian blocking (SB), and El Niño–Southern Oscillation (ENSO). The first two are directly related to the ongoing sea ice cover shrinkage in the Barents Sea and the hemispheric increase of near-surface temperature. By independent dynamical processes they connect the sea ice melting and related atmospheric perturbations in the Arctic either with the negative phase of the NAO or the negative trend of atmospheric temperatures over the tropical Pacific. The study further shows that the ongoing sea ice melting may often imply the formation of large-scale circulation patterns bringing the recent trend of colder winters in densely populated areas like Europe and North America.


2020 ◽  
Author(s):  
Xavier Levine ◽  
Ivana Cvijanovic ◽  
Pablo Ortega ◽  
Markus Donat

<p>Climate models predict that sea ice cover will shrink--even disappear-- in most regions of the Arctic basin by the end of the century, triggering local and remote responses in the surface climate via atmospheric and oceanic circulation changes. In particular, it has been suggested that seasonal anomalies over Europe and North America in recent years could have been caused by record low Arctic sea ice cover. Despite an intense research effort toward quantifying its effect, the contribution of regional sea ice loss to climate change and its mechanisms of action remain controversial. </p><p>In this study, we prescribe sea ice loss in individual sectors of the Arctic within a climate model, and study its effect on climatic anomalies in the Northern Hemisphere. Using the EC-EARTH3.3 model in its atmospheric-only and fully coupled configuration, and following the PAMIP protocol, sea ice cover is set to either its present day state, or a hypothetical future distribution of reduced sea ice cover in the Arctic. This pan-Arctic sea ice loss experiment is then complemented by 8 regional sea ice loss experiments.</p><p>Comparing those experiments, we assess the contribution of sea ice loss in each region of the Arctic to climate change over Europe, Siberia and North America. We find that sea ice loss in some sectors of the Arctic appears to matter more for Northern Hemisphere climate change than others, even after normalizing for differences in surface cover. Furthermore, the climatic effect of regional sea ice loss is compared to that of a pan-Arctic sea ice loss, whose associated climate anomalies are found to be strikingly different from that expected from a simple linear response to regional sea ice loss. We propose a mechanism for this nonlinear climate response to regional sea ice loss, which considers regional differences in the strength of the thermal inversion over the Arctic, as well as the relative proximity of each Arctic region to features critical for stationary wave genesis (e.g. the Tibetan plateau).</p>


Sign in / Sign up

Export Citation Format

Share Document