scholarly journals A Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation

2013 ◽  
Vol 26 (5) ◽  
pp. 1702-1715 ◽  
Author(s):  
Yi Huang

Abstract A simulation experiment is conducted to inquire into the mean climate state and likely trends in atmospheric infrared radiation spectra. Upwelling and downwelling spectra at five vertical levels from the surface to the top of the atmosphere (TOA) are rigorously calculated from a climate-model-simulated atmosphere for a 25-yr period. Tracing the longwave radiation flux vertically and spectrally renders a dissection of the greenhouse effect of the earth atmosphere and its change due to climate forcings and feedbacks. The results show that the total outgoing longwave radiation (OLR) at the TOA may be conserved due to 1) compensating temperature and opacity effects and 2) contrasting temperature changes in troposphere and stratosphere. The tightly coupled tropospheric temperature and opacity effects reduce the overall tropospheric contribution to OLR change to be comparable to the overall stratospheric contribution, which suggests that transient OLR change is constrained by the relative strengths of stratospheric and tropospheric temperature changes. The total OLR energy, however, is redistributed across its spectrum. The earliest detectable global climate change signal lies in the CO2 absorption bands, which results from stratospheric cooling and the CO2 opacity effect. This signal can be detected much sooner than surface temperature change and is little affected by achievable instrument accuracy. In contrast, both tropospheric temperature and opacity effects increase downwelling longwave radiation (DLR), which makes DLR a verifiable aspect of global warming. The time it takes to detect surface DLR change roughly equals that of surface temperature change. Measuring downwelling radiances at strong water vapor lines at the tropopause can particularly help monitor stratospheric water vapor.

2012 ◽  
Vol 12 (1) ◽  
pp. 2853-2861 ◽  
Author(s):  
M. Previdi ◽  
L. M. Polvani

Abstract. Stratospheric ozone recovery is expected to figure prominently in twenty-first century climate change. In a recent paper, Hu et al. (2011) argue that one impact of ozone recovery will be to enhance the warming of the surface-troposphere system produced by increases in well-mixed greenhouse gases; furthermore, this enhanced warming would be strongest in the Northern Hemisphere, which is surprising since previous studies have consistently shown the effects of stratospheric ozone changes to be most pronounced in the Southern Hemisphere. Hu et al. (2011) base their claims largely on differences in the simulated temperature change between two groups of IPCC climate models, one group which included stratospheric ozone recovery in its twenty-first century simulations and a second group which did not. Both groups of models were forced with the same increases in well-mixed greenhouse gases according to the A1B emissions scenario. In the current work, we compare the surface temperature responses of the same two groups of models in a different experiment in which atmospheric CO2 was increased by 1% per year until doubling. We find remarkably similar differences in the simulated surface temperature change between the two sets of models as Hu et al. (2011) found for the A1B experiment, suggesting that the enhanced warming which they attribute to stratospheric ozone recovery is actually a reflection of different responses of the two model groups to greenhouse gas forcing.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lu Liu ◽  
Dan Zheng ◽  
Jianting Zhou ◽  
Juan Yang ◽  
Hong Zhang

This study introduces an eddy current thermography technique that can be used to detect and evaluate steel corrosion in a reinforced concrete structure. The rate of surface temperature changes in reinforced concrete is proposed as a means to characterize the degree of steel bar corrosion. The rate of surface temperature changes increased gradually with an increase in the corrosion degree. The influence of structural parameters on the rate of the temperature change was analyzed in detail. The results indicated that the rate of surface temperature change increased with a decrease in the concrete cover depth and with an increase in the humidity of the concrete, and this was affected by the diameter of the internal steel bar. Concrete cover was the most significant factor that affected the rate of the surface temperature change, except for the corrosion degree. The variations in the surface temperature of reinforced concrete can be explained using the law of electromagnetic induction and the electrochemical property change of corroded steel bar. This research provides a reliable basis for real-world applications and is helpful to understand the application scope of eddy current thermography technology for the quantitative detection of steel corrosion.


2012 ◽  
Vol 12 (11) ◽  
pp. 4893-4896 ◽  
Author(s):  
M. Previdi ◽  
L. M. Polvani

Abstract. Stratospheric ozone recovery is expected to figure prominently in twenty-first century climate change. In a recent paper, Hu et al. (2011) argue that one impact of ozone recovery will be to enhance the warming of the surface-troposphere system produced by increases in well-mixed greenhouse gases. Furthermore, this enhanced warming would be strongest in the Northern Hemisphere, which is surprising since previous studies have consistently shown the effects of stratospheric ozone changes to be most pronounced in the Southern Hemisphere. Hu et al. (2011) base their claims largely on differences in the simulated temperature change between two groups of CMIP3 (Coupled Model Intercomparison Project 3) climate models, one group which included stratospheric ozone recovery in its twenty-first century simulations and a second group which did not. Both groups of models were forced with the same increases in well-mixed greenhouse gases according to the A1B emissions scenario. In the current work, we compare the surface temperature responses of the same two groups of models in a different experiment in which atmospheric CO2 was increased by 1% per year until doubling. We find remarkably similar differences in the simulated surface temperature change between the two sets of models as Hu et al. (2011) found for the A1B experiment, suggesting that the enhanced warming which they attribute to stratospheric ozone recovery is actually a reflection of different responses of the two model groups to greenhouse gas forcing.


2019 ◽  
Vol 15 (4) ◽  
pp. 1375-1394 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Marina Suzuki

Abstract. There remain substantial uncertainties in future projections of Arctic climate change. There is a potential to constrain these uncertainties using a combination of paleoclimate simulations and proxy data, but such a constraint must be accompanied by physical understanding on the connection between past and future simulations. Here, we examine the relevance of an Arctic warming mechanism in the mid-Holocene (MH) to the future with emphasis on process understanding. We conducted a surface energy balance analysis on 10 atmosphere and ocean general circulation models under the MH and future Representative Concentration Pathway (RCP) 4.5 scenario forcings. It is found that many of the dominant processes that amplify Arctic warming over the ocean from late autumn to early winter are common between the two periods, despite the difference in the source of the forcing (insolation vs. greenhouse gases). The positive albedo feedback in summer results in an increase in oceanic heat release in the colder season when the atmospheric stratification is strong, and an increased greenhouse effect from clouds helps amplify the warming during the season with small insolation. The seasonal progress was elucidated by the decomposition of the factors associated with sea surface temperature, ice concentration, and ice surface temperature changes. We also quantified the contribution of individual components to the inter-model variance in the surface temperature changes. The downward clear-sky longwave radiation is one of major contributors to the model spread throughout the year. Other controlling terms for the model spread vary with the season, but they are similar between the MH and the future in each season. This result suggests that the MH Arctic change may not be analogous to the future in some seasons when the temperature response differs, but it is still useful to constrain the model spread in the future Arctic projection. The cross-model correlation suggests that the feedbacks in preceding seasons should not be overlooked when determining constraints, particularly summer sea ice cover for the constraint of autumn–winter surface temperature response.


2000 ◽  
Vol 105 (D10) ◽  
pp. 12517-12517 ◽  
Author(s):  
J. Hansen ◽  
R. Ruedy ◽  
J. Glascoe ◽  
M. Sato

1999 ◽  
Vol 104 (D24) ◽  
pp. 30997-31022 ◽  
Author(s):  
J. Hansen ◽  
R. Ruedy ◽  
J. Glascoe ◽  
M. Sato

Sign in / Sign up

Export Citation Format

Share Document