scholarly journals Interannual Variability of Arctic Landfast Ice between 1976 and 2007

2014 ◽  
Vol 27 (1) ◽  
pp. 227-243 ◽  
Author(s):  
Yanling Yu ◽  
Harry Stern ◽  
Charles Fowler ◽  
Florence Fetterer ◽  
James Maslanik

Abstract Analysis of weekly sea ice charts produced by the U.S. National Ice Center from 1976 to 2007 indicates large interannual variations in the averaged winter landfast ice extent around the Arctic Basin. During the 32-yr period of the record, landfast ice cover was relatively extensive from the early to mid-1980s but since then has declined in many coastal regions of the Arctic, particularly after the early 1990s. While the Barents, Baltic, and Bering Seas show increases in landfast ice area, the overall change for the Northern Hemisphere is negative, about −12.27 (±2.8) × 103 km2 yr−1, or −7 (±1.5)% decade−1 relative to the long-term mean. Except in a few coastal regions, the seasonal duration of landfast ice is shorter overall, particularly in the Laptev, East Siberian, and Chukchi Seas. The decreased winter landfast ice extent is associated with some notable changes in ice growth and melt patterns, in particular the slowed landfast ice expansion during fall and early winter since 1990. The observed changes in Arctic landfast ice could have profound impacts on the Arctic coasts. The challenge is to understand and project the responses of the whole coastal ecosystem to changing ice cover and Arctic warming.

2005 ◽  
Vol 18 (18) ◽  
pp. 3840-3855 ◽  
Author(s):  
Sergey V. Shoutilin ◽  
Alexander P. Makshtas ◽  
Motoyoshi Ikeda ◽  
Alexey V. Marchenko ◽  
Roman V. Bekryaev

Abstract A dynamic–thermodynamic sea ice model with the ocean mixed layer forced by atmospheric data is used to investigate spatial and long-term variability of the sea ice cover in the Arctic basin. The model satisfactorily reproduces the averaged main characteristics of the sea ice and its extent in the Arctic Basin, as well as its decrease in the early 1990s. Employment of the average ridge shape for describing the ridging allows the authors to suggest that it occurs in winter and varies from year to year by a factor of 2, depending on an atmospheric circulation pattern. Production and horizontal movement of ridges are the focus in this paper, as they show the importance of interannual variability of the Arctic ice cover. The observed thinning in the 1990s is a result of reduction in ridge formation on the Pacific side during the cyclonic phase of the Arctic Oscillation. The model yields a partial recovery of sea ice cover in the last few years of the twentieth century. In addition to the sea ice cover and average thickness compared with satellite data, the ridge amount is verified with observations taken in the vicinity of the Russian coast. The model results are useful to estimate long-term variability of the probability of ridge-free navigation in different parts of the Arctic Ocean, including the Northern Sea Route area.


2006 ◽  
Vol 6 (2) ◽  
pp. 349-374 ◽  
Author(s):  
W. Steinbrecht ◽  
B. Haßler ◽  
C. Brühl ◽  
M. Dameris ◽  
M. A. Giorgetta ◽  
...  

Abstract. We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to -10 DU/decade at high northern latitudes, up to -40 DU/decade at high southern latitudes, and around -0.7 K/decade over much of the globe), from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak), the QBO (up to 20 DU, or 2 K peak to peak), and from tropospheric weather (up to 20 DU, or 2 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15 DU, or 1 K), or to ENSO (up to 10 DU, or 1 K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to -30 DU, or +3 K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO.


2008 ◽  
Vol 33 (9) ◽  
pp. 594-599
Author(s):  
Yu. A. Gorbunov ◽  
L. N. Dyment ◽  
S. M. Losev ◽  
S. V. Frolov

2012 ◽  
Vol 25 (1) ◽  
pp. 307-319 ◽  
Author(s):  
Jan Sedláček ◽  
Reto Knutti ◽  
Olivia Martius ◽  
Urs Beyerle

Abstract The Arctic sea ice cover declined over the last few decades and reached a record minimum in 2007, with a slight recovery thereafter. Inspired by this the authors investigate the response of atmospheric and oceanic properties to a 1-yr period of reduced sea ice cover. Two ensembles of equilibrium and transient simulations are produced with the Community Climate System Model. A sea ice change is induced through an albedo change of 1 yr. The sea ice area and thickness recover in both ensembles after 3 and 5 yr, respectively. The sea ice anomaly leads to changes in ocean temperature and salinity to a depth of about 200 m in the Arctic Basin. Further, the salinity and temperature changes in the surface layer trigger a “Great Salinity Anomaly” in the North Atlantic that takes roughly 8 yr to travel across the North Atlantic back to high latitudes. In the atmosphere the changes induced by the sea ice anomaly do not last as long as in the ocean. The response in the transient and equilibrium simulations, while similar overall, differs in specific regional and temporal details. The surface air temperature increases over the Arctic Basin and the anomaly extends through the whole atmospheric column, changing the geopotential height fields and thus the storm tracks. The patterns of warming and thus the position of the geopotential height changes vary in the two ensembles. While the equilibrium simulation shifts the storm tracks to the south over the eastern North Atlantic and Europe, the transient simulation shifts the storm tracks south over the western North Atlantic and North America. The authors propose that the overall reduction in sea ice cover is important for producing ocean anomalies; however, for atmospheric anomalies the regional location of the sea ice anomalies is more important. While observed trends in Arctic sea ice are large and exceed those simulated by comprehensive climate models, there is little evidence based on this particular model that the seasonal loss of sea ice (e.g., as occurred in 2007) would constitute a threshold after which the Arctic would exhibit nonlinear, irreversible, or strongly accelerated sea ice loss. Caution should be exerted when extrapolating short-term trends to future sea ice behavior.


2019 ◽  
Vol 59 (1) ◽  
pp. 112-122 ◽  
Author(s):  
S. B. Krasheninnikova ◽  
M. A. Krasheninnikova

Based on the spectral analysis of a number of estimates of the ice extent of the Barents Sea, obtained from instrumental observational data for 1900–2014, and for the selected CMIP5 project models (MPI-ESM-LR, MPI-ESMMR and GFDL-CM3) for 1900–2005, a typical period of ~60‑year inter-annual variability associated with the Atlantic multidecadal oscillation (AMO) in conditions of a general significant decrease in the ice extent of the Barents Sea, which, according to observations and model calculations, was 20 and 15%, respectively, which confirms global warming. The maximum contribution to the total dispersion of temperature, ice cover of the Barents Sea, AMO, introduces variability with periods of more than 20 years and trends that are 47, 20, 51% and 33, 57, 30%, respectively. On the basis of the cross correlation analysis,  significant links have been established between the ice extent of the Barents Sea, AMO, and North Atlantic Oscillation (NAO) for the  period 1900–2014. A significant negative connection (R = −0.8) of ice cover and Atlantic multi-decadal oscillations was revealed at periods of more than 20 years with a shift of 1–2 years; NAO and ice cover (R = −0.6) with a shift of 1–2 years for periods of 10–20 years; AMO and NAO (R = −0.4 ÷ −0.5) with a 3‑year shift with AMO leading at 3–4, 6–8 and more than 20 years. The periods of the ice cover growth are specified: 1950–1980 and the reduction of the ice cover: the 1920–1950 and the 1980–2010 in the Barents Sea. Intensification of the transfer of warm waters from the North Atlantic to the Arctic basin, under the atmospheric influence caused by the NAO, accompanied by the growth of AMO leads to an increase in temperature, salinity and a decrease of ice cover in the Barents Sea. During periods of ice cover growth, opposite tendencies appear. The decrease in the ice cover area of the entire Northern Hemisphere by 1.5 × 106 km2 since the mid-1980s. to the beginning of the 2010, identified in the present work on NOAA satellite data, confirms the results obtained on the change in ice extent in the Barents Sea.


2012 ◽  
Vol 9 (2) ◽  
pp. 2055-2093 ◽  
Author(s):  
P. Coupel ◽  
H. Y. Jin ◽  
M. Joo ◽  
R. Horner ◽  
H. A. Bouvet ◽  
...  

Abstract. A large part of the Pacific Arctic basin experiences ice-free conditions in summer as a result of sea ice cover steadily decreasing over the last decades. To evaluate the impact of ice retreat on the Arctic ecosystem, we investigated phytoplankton communities from coastal sites (Chukchi shelf) to northern deep basins (up to 86° N), during year 2008 of high melting. Pigment and taxonomy in situ data were acquired under different ice regime: the ice -free basins (IFB, 74°–77° N), the marginal ice zone (MIZ, 77°–80° N) and the heavy ice covered basins (HIB, >80° N). Our results suggest that extensive ice melting provided favorable conditions to chrysophytes and prymnesiophytes growth and more hinospitable to pico-sized prasinophytes and micro-sized dinoflagellates. Larger cell diatoms were less abundant in the IFB while dominant in the MIZ of the deep Canadian basin. Our data were compared to those obtained during more icy years, 1994 and to a lesser extent, 2002. Freshening, stratification, light and nutrient availability are discussed as possible causes for observed phytoplankton communities under high and low sea ice cover.


2020 ◽  
Author(s):  
Valeria Selyuzhenok ◽  
Denis Demchev ◽  
Thomas Krumpen

<p>Landfast sea ice is a dominant sea ice feature of the Arctic coastal region. As a part of Arctic sea ice cover, landfast ice is an important part of coastal ecosystem, it provides functions as a climate regulator and platform for human activity. Recent changes in sea ice conditions in the Arctic have also affected landfast ice regime. At the same time, industrial interest in the Arctic shelf seas continue to increase. Knowledge on local landfast ice conditions are required to ensure safety of on ice operations and accurate forecasting.  In order to obtain a comprehensive information on landfast ice state we use a time series of wide swath SAR imagery.  An automatic sea ice tracking algorithm was applied to the sequential SAR images during the development stage of landfast ice cover. The analysis of resultant time series of sea ice drift allows to classify homogeneous sea ice drift fields and timing of their attachment to the landfast ice. In addition, the drift data allows to locate areas of formation of grounded sea ice accumulation called stamukha. This information сan be useful for local landfast ice stability assessment. The study is supported by the Russian Foundation for Basic Research (RFBR) grant 19-35-60033.</p>


1998 ◽  
Vol 16 (1) ◽  
pp. 110-115 ◽  
Author(s):  
A. P. Nagurny

Abstract. On the basis of stationary aerological observations and measurements at Russian "North Pole" drifting stations taken during 1954–1991, tropopause climate parameters (height and temperature at its upper and lower bounds) are determined. Long-term trends of these parameters over the Arctic Ocean are revealed.Key words. Meteorology and atmospheric dynamics · Climatology · Polar meteorology


2020 ◽  
Author(s):  
Stanislav Myslenkov ◽  
Vladimir Platonov ◽  
Alexander Kislov ◽  
Ksenia Silvestrova ◽  
Igor Medvedev

Abstract. Recurrence of extreme wind waves in the Kara Sea strongly influences the Arctic climate change. The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A third-generation wave model WaveWatchIII is used to reconstruct wind wave fields on an unstructured grid with a spatial resolution of 15–20 km for the period from 1979 to 2017. The mean and maximum wave heights, wavelengths and periods are calculated. The maximum significant wave height (SWH) for the whole period amounts to 9.9 m. The average long-term SWH for the ice-free period does not exceed 1.3 m. The seasonal variability of the wave parameters is analyzed. The interannual variability of storm waves recurrence with different thresholds (from 3 to 7 m) was calculated. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017. A double growth in the reccurence was observed for cases with an SWH more than 3–5 m from 1979 to 2017. The local maximum of the storm waves more than 3–4 m was observed in 1995, and the minimum in 1998. The maximum value (four cases) of the number of storms with an SWH threshold 7 m is registered in 2016. The frequency of wind speeds and ice conditions contributing to the storm waves formation were analyzed. It is shown that trends in the storm activity of the Kara Sea are primarily regulated by the ice. If the ice cover decreases in the southern part of the sea that leads to the increase of the number of events only with SWH threshold more than 3–4 m. If in the entire sea the ice cover decreases that leads already to increase of the extreme storms. The frequency of strong and long-term winds has high interannual variability and a weak positive trend. The analysis of distribution functions of the storm events with an SWH more than 3 m was carried out. Six different sectors of the Kara Sea were analyzed to reveal spatial differences. A comparison of the different distribution laws showed that the Pareto distribution is in the best agreement with the data. Up to 99 % of the points are described by this distribution. However, the extreme events with an SWH more than 6–7 m deviate from the distribution, and their probability is approximately twice as less as that predicted by the Pareto distribution. Presumably, this deviation is caused by the combined impact of rare wind speed frequencies and anomalies of the sea ice conditions.


Sign in / Sign up

Export Citation Format

Share Document