Simulations of the West African Monsoon with a Superparameterized Climate Model. Part II: African Easterly Waves

2014 ◽  
Vol 27 (22) ◽  
pp. 8323-8341 ◽  
Author(s):  
Rachel R. McCrary ◽  
David A. Randall ◽  
Cristiana Stan

Abstract The relationship between African easterly waves and convection is examined in two coupled general circulation models: the Community Climate System Model (CCSM) and the “superparameterized” CCSM (SP-CCSM). In the CCSM, the easterly waves are much weaker than observed. In the SP-CCSM, a two-dimensional cloud-resolving model replaces the conventional cloud parameterizations of CCSM. Results show that this allows for the simulation of easterly waves with realistic horizontal and vertical structures, although the model exaggerates the intensity of easterly wave activity over West Africa. The simulated waves of SP-CCSM are generated in East Africa and propagate westward at similar (although slightly slower) phase speeds to observations. The vertical structure of the waves resembles the first baroclinic mode. The coupling of the waves with convection is realistic. Evidence is provided herein that the diabatic heating associated with deep convection provides energy to the waves simulated in SP-CCSM. In contrast, horizontal and vertical structures of the weak waves in CCSM are unrealistic, and the simulated convection is decoupled from the circulation.

2016 ◽  
Vol 97 (12) ◽  
pp. 2305-2328 ◽  
Author(s):  
Paquita Zuidema ◽  
Ping Chang ◽  
Brian Medeiros ◽  
Ben P. Kirtman ◽  
Roberto Mechoso ◽  
...  

Abstract Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.


2014 ◽  
Vol 27 (22) ◽  
pp. 8303-8322 ◽  
Author(s):  
Rachel R. McCrary ◽  
David A. Randall ◽  
Cristiana Stan

Abstract The West African monsoon seasonal cycle is simulated with two coupled general circulation models: the Community Climate System Model (CCSM), which uses traditional convective parameterizations, and the “superparameterized” CCSM (SP-CCSM), in which the atmospheric parameterizations have been replaced with an embedded cloud-resolving model. Compared to CCSM, SP-CCSM better represents the magnitude and spatial patterns of summer monsoon precipitation over West Africa. Most importantly, the region of maximum precipitation is shifted from the Gulf of Guinea in CCSM (not realistic) to over the continent in SP-CCSM. SP-CCSM also develops its own biases—namely, excessive rainfall along the Guinean coast in summer. Biases in rainfall from both models are linked to a misrepresentation of the equatorial Atlantic cold tongue. Warm sea surface temperature (SST) biases are linked to westerly trade wind biases and convection within the intertropical convergence zone. Improved SST biases in SP-CCSM are linked to increased tropospheric warming associated with convection. A weaker-than-observed Saharan heat low is found in both models, which explains why the main band of precipitation does not penetrate as far northward as observed. The latitude–height position of the African easterly jet (AEJ) is comparable to observations in both models, but the meridional temperature and moisture gradients and the strength of the jet are too weak in SP-CCSM and too strong in CCSM. Differences in the AEJ are hypothesized to be influenced by the contrasting representation of African easterly waves in both models; no wave activity is found in CCSM, and strong waves are found in SP-CCSM.


2008 ◽  
Vol 21 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Yoo-Geun Ham ◽  
In-Sik Kang

Abstract The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs) and the eigenanalysis of a simplified version of an intermediate ENSO model. The response of the global-mean troposphere temperature to increasing greenhouse gases is more likely linear, while the amplitude and period of ENSO fluctuates in a multidecadal time scale. The climate system model outputs suggest that the multidecadal modulation of ENSO is related to the delayed response of the subsurface temperature in the tropical Pacific compared to the response time of the sea surface temperature (SST), which would lead a modulation of the vertical temperature gradient. Furthermore, an eigenanalysis considering only two parameters, the changes in the zonal contrast of the mean background SST and the changes in the vertical contrast between the mean surface and subsurface temperatures in the tropical Pacific, exhibits a good agreement with the CGCM outputs in terms of the multidecadal modulations of the ENSO amplitude and period. In particular, the change in the vertical contrast, that is, change in difference between the subsurface temperature and SST, turns out to be more influential on the ENSO modulation than changes in the mean SST itself.


2014 ◽  
Vol 27 (6) ◽  
pp. 2427-2443 ◽  
Author(s):  
Wei Liu ◽  
Zhengyu Liu ◽  
Esther C. Brady

Abstract This paper is concerned with the question: why do coupled general circulation models (CGCM) seem to be biased toward a monostable Atlantic meridional overturning circulation (AMOC)? In particular, the authors investigate whether the monostable behavior of the CGCMs is caused by a bias of model surface climatology. First observational literature is reviewed, and it is suggested that the AMOC is likely to be bistable in the real world in the past and present. Then the stability of the AMOC in the NCAR Community Climate System Model, version 3 (CCSM3) is studied by comparing the present-day control simulation (without flux adjustment) with a sensitivity experiment with flux adjustment. It is found that the monostable AMOC in the control simulation is altered to a bistable AMOC in the flux-adjustment experiment because a reduction of the surface salinity biases in the tropical and northern North Atlantic leads to a reduction of the bias of freshwater transport in the Atlantic. In particular, the tropical bias associated with the double ITCZ reduces salinity in the upper South Atlantic Ocean and, in turn, the AMOC freshwater export, which tends to overstabilize the AMOC and therefore biases the AMOC from bistable toward monostable state. This conclusion is consistent with a further analysis of the stability indicator of two groups of IPCC Fourth Assessment Report (AR4) CGCMs: one without and the other with flux adjustment. Because the tropical bias is a common feature among all CGCMs without flux adjustment, the authors propose that the surface climate bias, notably the tropical bias in the Atlantic, may contribute significantly to the monostability of AMOC behavior in current CGCMs.


2021 ◽  
Author(s):  
Gunter Stober ◽  
Ales Kuchar ◽  
Dimitry Pokhotelov ◽  
Huixin Liu ◽  
Han-Li Liu ◽  
...  

Abstract. Long-term and continuous observations of mesospheric/lower thermospheric winds are rare, but they are important to investigate climatological changes at these altitudes on time scales of several years, covering a solar cycle and longer. Such long time series are a natural heritage of the mesosphere/lower thermosphere climate, and they are valuable to compare climate models or long term runs of general circulation models (GCMs). Here we present a climatological comparison of wind observations from six meteor radars at two conjugate latitudes to validate the corresponding mean winds and atmospheric diurnal and semidiurnal tides from three GCMs, namely Ground-to-Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Community Climate Model Extension (Specified Dynamics) (WACCM-X(SD)) and Upper Atmosphere ICOsahedral Non-hydrostatic (UA-ICON) model. Our results indicate that there are interhemispheric differences in the seasonal characteristics of the diurnal and semidiurnal tide. There also are some differences in the mean wind climatologies of the models and the observations. Our results indicate that GAIA shows a reasonable agreement with the meteor radar observations during the winter season, whereas WACCM-X(SD) shows a better agreement with the radars for the hemispheric zonal summer wind reversal, which is more consistent with the meteor radar observations. The free running UA-ICON tends to show similar winds and tides compared to WACCM-X(SD).


2014 ◽  
Vol 27 (24) ◽  
pp. 9197-9213 ◽  
Author(s):  
Michael Horn ◽  
Kevin Walsh ◽  
Ming Zhao ◽  
Suzana J. Camargo ◽  
Enrico Scoccimarro ◽  
...  

Abstract Future tropical cyclone activity is a topic of great scientific and societal interest. In the absence of a climate theory of tropical cyclogenesis, general circulation models are the primary tool available for investigating the issue. However, the identification of tropical cyclones in model data at moderate resolution is complex, and numerous schemes have been developed for their detection. The influence of different tracking schemes on detected tropical cyclone activity and responses in the Hurricane Working Group experiments is examined herein. These are idealized atmospheric general circulation model experiments aimed at determining and distinguishing the effects of increased sea surface temperature and other increased CO2 effects on tropical cyclone activity. Two tracking schemes are applied to these data and the tracks provided by each modeling group are analyzed. The results herein indicate moderate agreement between the different tracking methods, with some models and experiments showing better agreement across schemes than others. When comparing responses between experiments, it is found that much of the disagreement between schemes is due to differences in duration, wind speed, and formation-latitude thresholds. After homogenization in these thresholds, agreement between different tracking methods is improved. However, much disagreement remains, accountable for by more fundamental differences between the tracking schemes. The results indicate that sensitivity testing and selection of objective thresholds are the key factors in obtaining meaningful, reproducible results when tracking tropical cyclones in climate model data at these resolutions, but that more fundamental differences between tracking methods can also have a significant impact on the responses in activity detected.


2021 ◽  
Author(s):  
Anna Mackie ◽  
Michael P. Byrne

<div> <p>Uncertainty in the response of clouds to warming remains a significant barrier to reducing the range in projected climate sensitivity. A key question is to what extent cloud feedbacks can be attributed to changes in circulation, such as the strengthening or weakening of ascent or changes in the areas of convecting vs subsiding air. Previous research has shown that, in general circulation models (GCMs), the ‘dynamic’ component of the cloud feedback – that which is due to changes in circulation rather than changes in the thermodynamic properties of clouds (Bony et al., 2006) – is generally small (Byrne and Schneider, 2018). An open question, however, is whether this extends to models at cloud resolving resolutions that explicitly simulate deep convection.  </p> </div><div> <p>Here, we utilize simulations from the Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP, Wing et al., 2018, 2020) to quantify the impact of circulation on tropical cloud feedbacks. RCE is a simple idealisation of the tropical atmosphere and we focus on simulations in a long channel configuration with uniform sea surface temperatures of 295, 300 and 305K. The dynamic component of the total cloud feedback is substantial for this suite of cloud resolving models (CRMs), and is driven by circulation changes and nonlinearity in the climatological relationship between clouds and circulation. The large spread in dynamic component across models is linked to the extent to which convection strengthens and narrows with warming. This strengthening/narrowing of convective regions is further linked to changes in clear-sky radiative cooling and mid-tropospheric static stability in subsiding regions. </p> </div><div> <p> </p> </div>


2017 ◽  
Author(s):  
Wilton Aguiar ◽  
Mauricio M. Mata ◽  
Rodrigo Kerr

Abstract. Deep convection in open ocean polynyas are common sources of error on the representation of Antarctic Bottom Water (AABW) formation in Ocean General Circulation Models. Even though those events are well described in non-assimilatory ocean simulations, recent appearance of open ocean polynya in Estimating the Circulation and Climate of the Ocean Phase II reanalysis product raises a question if this spurious event is also found in state-of-art reanalysis products. In order to answer this question, we evaluate how three recently released high-resolution ocean reanalysis form AABW in their simulations. We found that two of them (ECCO2 and SoSE) create AABW by open ocean deep convection events in Weddell Sea, showing that assimilation of sea ice has not been enough to avoid open ocean polynya appearance. The third reanalysis – My Ocean University Reading – actually creates AABW by a rather dynamically accurate mechanism, depicting both continental shelf convection, and exporting of Dense Shelf Water to open ocean. Although the accuracy of the AABW formation in this reanalysis allows an advance in represent this process, the differences found between the real ocean and the simulated one suggests that ocean reanalysis still need substantial improvements to accurately represent AABW formation.


2018 ◽  
Vol 11 (8) ◽  
pp. 3147-3158 ◽  
Author(s):  
Hua Song ◽  
Zhibo Zhang ◽  
Po-Lun Ma ◽  
Steven Ghan ◽  
Minghuai Wang

Abstract. Satellite cloud observations have become an indispensable tool for evaluating general circulation models (GCMs). To facilitate the satellite and GCM comparisons, the CFMIP (Cloud Feedback Model Inter-comparison Project) Observation Simulator Package (COSP) has been developed and is now increasingly used in GCM evaluations. Real-world clouds and precipitation can have significant sub-grid variations, which, however, are often ignored or oversimplified in the COSP simulation. In this study, we use COSP cloud simulations from the Super-Parameterized Community Atmosphere Model (SPCAM5) and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and CloudSat to demonstrate the importance of considering the sub-grid variability of cloud and precipitation when using the COSP to evaluate GCM simulations. We carry out two sensitivity tests: SPCAM5 COSP and SPCAM5-Homogeneous COSP. In the SPCAM5 COSP run, the sub-grid cloud and precipitation properties from the embedded cloud-resolving model (CRM) of SPCAM5 are used to drive the COSP simulation, while in the SPCAM5-Homogeneous COSP run only grid-mean cloud and precipitation properties (i.e., no sub-grid variations) are given to the COSP. We find that the warm rain signatures in the SPCAM5 COSP run agree with the MODIS and CloudSat observations quite well. In contrast, the SPCAM5-Homogeneous COSP run which ignores the sub-grid cloud variations substantially overestimates the radar reflectivity and probability of precipitation compared to the satellite observations, as well as the results from the SPCAM5 COSP run. The significant differences between the two COSP runs demonstrate that it is important to take into account the sub-grid variations of cloud and precipitation when using COSP to evaluate the GCM to avoid confusing and misleading results.


2000 ◽  
Vol 31 ◽  
pp. 80-84 ◽  
Author(s):  
Hanns Kerschner ◽  
Georg Kaser ◽  
Rudolf Sailer

AbstractMoraines of the Younger Dryas ˚Egesen Stadial", which are widespread features in the Alps, are a valuable terrestrial data source for quantitative palaeoclimatic studies. The depression of the early Younger Dryas (Egesen-I) equilibrium-line altitude (ELA) shows a distinct spatial pattern. It was greatest (about –450 to –500 m vs present day) m areas exposed towards the west and northwest. In the central, more sheltered valleys it was on the order of –300 m or less. Summer temperature depression, which can be derived from the Younger Dryas timberline depression, was on the order of –3.5 K. The stochastic glacier-climate model of Ohmura and others (1992), which relates summer temperature and precipitation at the ELA, is used to infer precipitation change. Results are compared with those obtained from the glacial-meteorological approach of Kuhn (1981a). The two models produce highly similar results. During the early Younger Dryas, climate in the central valleys of the Alps seems to have been considerably drier than today In areas open to the west and northwest, precipitation seems to have been the same as today or even slightly higher. These results, which are based on a rather dense network of data points, agree well with results from permafrost-climate studies and the more qualitative information from palaeobotanical research. They also support the results from atmospheric general circulation models for the Younger Dryas in Europe, which point towards a more zonal type of circulation.


Sign in / Sign up

Export Citation Format

Share Document