Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions

2014 ◽  
Vol 27 (23) ◽  
pp. 8918-8933 ◽  
Author(s):  
Florence Colleoni ◽  
Simona Masina ◽  
Annalisa Cherchi ◽  
Doroteaciro Iovino

Abstract This work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere–ocean general circulation model to simulate the mean climate state of six time slices at 115, 122, 125, 229, 236, and 239 kyr, representative of a climate evolution from interglacial to glacial inception conditions. The simulations are designed to separate the effects of orbital parameters from those of greenhouse gas (GHG). Their results show that, in all the time slices considered, MIS 7 boreal lands mean annual climate is colder than the MIS 5 one. This difference is explained at 70% by the impact of the MIS 7 GHG. While the impact of GHG over Northern Hemisphere is homogeneous, the difference in temperature between MIS 7 and MIS 5 due to orbital parameters differs regionally and is linked with the Arctic Oscillation. The perennial snow cover is larger in all the MIS 7 experiments compared to MIS 5, as a result of MIS 7 orbital parameters, strengthened by GHG. At regional scale, Eurasia exhibits the strongest response to MIS 7 cold climate with a perennial snow area 3 times larger than in MIS 5 experiments. This suggests that MIS 7 glacial inception is more favorable over this area than over North America. Furthermore, at 239 kyr, the perennial snow covers an area equivalent to that of MIS 5 glacial inception (115 kyr). The authors suggest that MIS 7 glacial inception is more extensive than MIS 5 glacial inception over the high latitudes.

Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 967-975 ◽  
Author(s):  
A. J. G. Nurser ◽  
S. Bacon

Abstract. The first (and second) baroclinic deformation (or Rossby) radii are presented north of ~60° N, focusing on deep basins and shelf seas in the high Arctic Ocean, the Nordic seas, Baffin Bay, Hudson Bay and the Canadian Arctic Archipelago, derived from climatological ocean data. In the high Arctic Ocean, the first Rossby radius increases from ~5 km in the Nansen Basin to ~15 km in the central Canadian Basin. In the shelf seas and elsewhere, values are low (1–7 km), reflecting weak density stratification, shallow water, or both. Seasonality strongly impacts the Rossby radius only in shallow seas, where winter homogenization of the water column can reduce it to below 1 km. Greater detail is seen in the output from an ice–ocean general circulation model, of higher resolution than the climatology. To assess the impact of secular variability, 10 years (2003–2012) of hydrographic stations along 150° W in the Beaufort Gyre are also analysed. The first-mode Rossby radius increases over this period by ~20%. Finally, we review the observed scales of Arctic Ocean eddies.


2013 ◽  
Vol 13 (19) ◽  
pp. 10027-10048 ◽  
Author(s):  
P. Huszar ◽  
H. Teyssèdre ◽  
M. Michou ◽  
A. Voldoire ◽  
D. J. L. Olivié ◽  
...  

Abstract. Our work is among the first that use an atmosphere-ocean general circulation model (AOGCM) with online chemistry to evaluate the impact of future aviation emissions on temperature. Other particularities of our study include non-scaling to the aviation emissions, and the analysis of models' transient response using ensemble simulations. The model we use is the Météo-France CNRM-CM5.1 earth system model extended with the REPROBUS chemistry scheme. The time horizon of our interest is 1940–2100, assuming the A1B SRES scenario. We investigate the present and future impact of aviation emissions of CO2, NOx and H2O on climate, taking into account changes in greenhouse gases, contrails and contrail-induced cirrus (CIC). As in many transport-related impact studies, we distinguish between the climate impacts of CO2 emissions and those of non-CO2 emissions. Aviation-produced aerosol is not considered in the study. Our modeling system simulated a notable sea-ice bias in the Arctic, and therefore results concerning the surface should be viewed with caution. The global averaged near-surface CO2 impact reaches around 0.1 K by the end of the 21st century, while the non-CO2 impact reaches 0.2 K in the second half of the century. The NOx emissions impact is almost negligible in our simulations, as our aviation-induced ozone production is small. As a consequence, the non-CO2 signal is very similar to the CIC signal. The seasonal analysis shows that the strongest warming due to aviation is modeled for the late summer and early autumn. In the stratosphere, a significant cooling is attributed to aviation CO2 emissions (−0.25 K by 2100). A −0.3 K temperature decrease is modeled when considering all the aviation emissions, but no significant signal appears from the CIC or NOx forcings in the stratosphere.


2016 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8±4 K in northwestern Greenland based on water stable isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and pre-industrial oceanic conditions and vice versa, are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes. Surface mass balance calculations with an energy balance model indicate potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction.


2011 ◽  
Vol 11 (2) ◽  
pp. 6805-6843 ◽  
Author(s):  
G. B. Hedegaard ◽  
A. Gross ◽  
J. H. Christensen ◽  
W. May ◽  
H. Skov ◽  
...  

Abstract. The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM) forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs) are governing with respect to changes in ozone both in the past, present and future century.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 229-244
Author(s):  
K. RUPA KUMAR ◽  
R. G. ASHRIT

The regional climatic impacts associated with global climatic change and their assessment are very important since agriculture, water resources, ecology etc., are all vulnerable to climatic changes on regional scale. Coupled Atmosphere-Ocean general circulation model (AOGCM) simulations provide a range of scenarios, which can be used, for the assessment of impacts and development of adaptive or mitigative strategies. Validation of the models against the observations and establishing the sensitivity to climate change forcing are essential before the model projections are used for assessment of possible impacts. Moreover model simulated climate projections are often of coarse resolution while the models used for impact assessment, (e.g. crop simulation models, or river runoff models etc.) operate on a higher spatial resolution. This spatial mismatch can be overcome by adopting an appropriate strategy of downscaling the GCM output.   This study examines two AOGCM (ECHAM4/OPYC3 and HadCM2) climate change simulations for their performance in the simulation of monsoon climate over India and the sensitivity of the simulated monsoon climate to transient changes in the atmospheric concentrations of greenhouse gases and sulfate aerosols. The results show that the two models simulate the gross features of climate over India reasonably well. However the inter-model differences in simulation of mean characteristics, sensitivity to forcing and in the simulation of climate change suggest need for caution. Further an empirical downscaling approach in used to assess the possibility of using GCM projections for preparation of regional climate change scenario for India.


1997 ◽  
Vol 25 ◽  
pp. 116-120 ◽  
Author(s):  
S. Legutke ◽  
E. Maier-Reimkr ◽  
A. Stössel ◽  
A. Hellbach

A global ocean general circulation model has been coupled with a dynamic thermodynamic sea-ice model. This model has been spun-up in a 1000 year integration using daily atmosphere model data. Main water masses and currents are reproduced as well as the seasonal characteristics of the ice cover of the Northern and Southern Hemispheres. Model results for the Southern Ocean, however, show the ice cover as too thin, and there are large permanent polynyas in the Weddell and Ross Seas. These polynyas are due to a large upward oceanic heat flux caused by haline rejection during the freezing of sea ice. Sensitivity studies were performed to test several ways of treating the sea-surface salinity and the rejected brine. The impact on the ice cover, water-mass characteristics, and ocean circulation are described.


2021 ◽  
pp. 1-59
Author(s):  
Ming Zhang ◽  
Yonggang Liu ◽  
Jian Zhang ◽  
Qin Wen

AbstractThe North Africa was green during the mid-Holocene (6 ka) and emitting much less dust to the atmosphere than in present day. Here we use a fully coupled atmosphere-ocean general circulation model, CESM1.2.2, to test the impact of dust reduction and greening of Sahara on the Atlantic Meridional Overturning Circulation (AMOC) during this period. Results show that dust removal leads to a decrease of AMOC by 6.2 % while greening of Sahara with 100 % shrub (100 % grass) causes an enhancement of the AMOC by 6.1 % (4.8 %). The AMOC is increased by 5.3 % (2.3 %) when both the dust reduction and green Sahara with 100 % shrub (100 % grass) are considered. The AMOC changes are primarily due to the precipitation change over the west subtropical North Atlantic, from where the salinity anomaly is advected to the deepwater formation region. Global mean surface temperature increases by 0.09 °C and 0.40 °C (0.25 °C) when global dust is removed and when North Africa and Arabian region are covered by shrub (grass), respectively, showing a dominating effect of vegetation over dust. The comparison between modeled and reconstructed sea-surface temperature is improved when the effect of vegetation is considered. The results may have implication for climate impact of future wetting over North Africa, either through global warming or through building of solar farms and wind farms.


2016 ◽  
Vol 12 (9) ◽  
pp. 1907-1918 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129 000–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8 ± 4 K in northwestern Greenland based on stable water isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and preindustrial oceanic conditions and vice versa are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause an annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes and an extensive sea ice cover. Surface mass balance calculations with an energy balance model further indicate that the combination of temperature and precipitation anomalies leads to potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction. Consequently, the Eemian is not a suitable analogue for future ice sheet changes.


1996 ◽  
Vol 14 (10) ◽  
pp. 1066-1077 ◽  
Author(s):  
S. Trzaska ◽  
V. Moron ◽  
B. Fontaine

Abstract. This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO) phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns) were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST) patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP) climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder) than the long-term mean in the southern hemisphere (northern hemisphere)]. Atlantic SSTAs may also play a significant role.


Sign in / Sign up

Export Citation Format

Share Document