scholarly journals Changes of the Annual Precipitation over Central Asia in the Twenty-First Century Projected by Multimodels of CMIP5

2014 ◽  
Vol 27 (17) ◽  
pp. 6627-6646 ◽  
Author(s):  
Anning Huang ◽  
Yang Zhou ◽  
Yaocun Zhang ◽  
Danqing Huang ◽  
Yong Zhao ◽  
...  

Abstract Based on the outputs of historical and future representative concentration pathway (RCP) experiments produced by 28 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), future changes in climatic mean, interannual standard deviation (ISD), and long-term trends of the annual precipitation over central Asia (CA) have been estimated. Under different emission scenarios during the twenty-first century, the climatic mean and ISD (long-term trends) of the annual precipitation over CA projected by the five best models’ ensemble mean show very similar (quite different) spatial patterns to those in the twentieth century. Relatively stronger increasing rates (over 3 mm decade−1 in RCP2.6 and over 6 mm decade−1 in RCP4.5 and RCP8.5) are located over northern CA and the northeastern Tibetan Plateau. Compared to the situations in the twentieth century, the climatic mean, ISD, and long-term trends of the projected annual precipitation over most of CA under different emission scenarios exhibit robust increasing changes during the twenty-first century. The projected increasing changes in the climatic mean (ISD) of the CA annual mean range from 10% to 35% (10%–90%) under different emission scenarios with relatively large increases over Xinjiang, China (northern CA and Xinjiang). The increasing trends of the annual precipitation over most of CA are projected to intensify with relatively large increases (over 3–9 mm decade−1) located over northern CA, the Tian Shan Mountains, and northern Tibet during the twenty-first century. In addition, the intensities of the increasing changes in the climatic mean, ISD, and trends of CA annual precipitation are intensified with the emissions increased correspondingly. Further analyses of the possible mechanisms related to the projected changes in precipitation indicate that the increases of the annual precipitation over CA in the twenty-first century are mainly attributed to the enhanced precipitable water that results from strengthened water vapor transport and surface evaporation.

2011 ◽  
Vol 15 (17) ◽  
pp. 1-37 ◽  
Author(s):  
Lauren E. Hay ◽  
Steven L. Markstrom ◽  
Christian Ward-Garrison

Abstract The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a process-based, distributed-parameter watershed model. This study involves four major steps: 1) setup and calibration of the PRMS model in 14 basins across the United States by local U.S. Geological Survey personnel; 2) statistical downscaling of the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 climate-change emission scenarios to create PRMS input files that reflect these emission scenarios; 3) run PRMS for the climate-change emission scenarios for the 14 basins; and 4) evaluation of the PRMS output. This paper presents an overview of this project, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be very different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the climate emission scenarios and how this uncertainty propagates through the hydrologic simulations. This paper concludes with a discussion of the lessons learned and potential for future work.


2008 ◽  
Vol 21 (14) ◽  
pp. 3471-3486 ◽  
Author(s):  
M. Biasutti ◽  
I. M. Held ◽  
A. H. Sobel ◽  
A. Giannini

Abstract The outlook for Sahel precipitation in coupled simulations of the twenty-first century is very uncertain, with different models disagreeing even on the sign of the trends. Such disagreement is especially surprising in light of the robust response of the same coupled models to the twentieth-century forcings. This study presents a statistical analysis of the preindustrial, twentieth-century and twenty-first-century A1B scenario simulations in the latest Coupled Model Intercomparison Project 3 (CMIP3) dataset; it shows that the relationship that links Sahel rainfall anomalies to tropical sea surface temperature (SST) anomalies at interannual time scales in observations is reproduced by most models, independently of the change in the basic state as the world warms. The same SST–Sahel relationship can be used to predict the simulated twentieth-century changes in Sahel rainfall from each model’s simulation of changes in Indo-Pacific SST and Atlantic SST meridional gradient, although the prediction overestimates the simulated trends. Conversely, such a relationship does not explain the rainfall trend in the twenty-first century in a majority of models. These results are consistent with there being, in most models, a substantial direct positive effect of atmospheric greenhouse gases on Sahel rainfall, not mediated through SST.


2014 ◽  
Vol 27 (17) ◽  
pp. 6591-6611 ◽  
Author(s):  
Botao Zhou ◽  
Qiuzi Han Wen ◽  
Ying Xu ◽  
Lianchun Song ◽  
Xuebin Zhang

Abstract This paper presents projected changes in temperature and precipitation extremes in China by the end of the twenty-first century based on the Coupled Model Intercomparison Project phase 5 (CMIP5) simulations. The temporal changes and their spatial patterns in the Expert Team on Climate Change Detection and Indices (ETCCDI) indices under the RCP4.5 and RCP8.5 emission scenarios are analyzed. Compared to the reference period 1986–2005, substantial changes are projected in temperature and precipitation extremes under both emission scenarios. These changes include a decrease in cold extremes, an increase in warm extremes, and an intensification of precipitation extremes. The intermodel spread in the projection increases with time, with wider spread under RCP8.5 than RCP4.5 for most indices, especially at the subregional scale. The difference in the projected changes under the two RCPs begins to emerge in the 2040s. Analyses based on the mixed-effects analysis of variance (ANOVA) model indicate that by the end of the twenty-first century, at the national scale, the dominant contributor to the projection uncertainty of most temperature-based indices, and some precipitation extremes [including maximum 1-day precipitation (RX1day) and maximum 5-day precipitation (RX5day), and total extremely wet day total amount (R95p)], is the difference in emission scenarios. By the end of the twenty-first century, model uncertainty is the dominant factor at the regional scale and for the other indices. Natural variability can also play very important role.


2020 ◽  
Vol 33 (1) ◽  
pp. 263-279 ◽  
Author(s):  
Pedro M. Sousa ◽  
Alexandre M. Ramos ◽  
Christoph C. Raible ◽  
M. Messmer ◽  
Ricardo Tomé ◽  
...  

AbstractMoisture transport over the northeastern Atlantic Ocean is an important process governing precipitation distribution and variability over western Europe. To assess its long-term variability, the vertically integrated horizontal water vapor transport (IVT) from a long-term climate simulation spanning the period 850–2100 CE was used. Results show a steady increase in moisture transport toward western Europe since the late-nineteenth century that is projected to expand during the twenty-first century under the RCP8.5 scenario. The projected IVT for 2070–99 significantly exceeds the range given by interannual–interdecadal variability of the last millennium. Changes in IVT are in line with significant increases in tropospheric moisture content, driven by the concurrent rise in surface temperatures associated with the anthropogenic climate trend. On regional scales, recent and projected precipitation changes over the British Isles follow the global positive IVT trend, whereas a robust precipitation decrease over Iberia is identified in the twenty-first century, particularly during autumn. This indicates a possible extension of stable and dry summer conditions and a decoupling between moisture availability and dynamical forcing. The investigation of circulation features reveals a mean poleward shift of moisture corridors and associated atmospheric rivers. In particular, in Iberia, a significant increase in the frequency of dry weather types is observed, accompanied by a decrease in the frequency of wet types. An opposite response is observed over the British Isles. These changes imply a stronger meridional north–south dipole in terms of pressure and precipitation distributions, enhancing the transport toward central Europe rather than to Iberia.


2013 ◽  
Vol 26 (20) ◽  
pp. 7813-7828 ◽  
Author(s):  
John P. Krasting ◽  
Anthony J. Broccoli ◽  
Keith W. Dixon ◽  
John R. Lanzante

Abstract Using simulations performed with 18 coupled atmosphere–ocean global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), projections of the Northern Hemisphere snowfall under the representative concentration pathway (RCP4.5) scenario are analyzed for the period 2006–2100. These models perform well in simulating twentieth-century snowfall, although there is a positive bias in many regions. Annual snowfall is projected to decrease across much of the Northern Hemisphere during the twenty-first century, with increases projected at higher latitudes. On a seasonal basis, the transition zone between negative and positive snowfall trends corresponds approximately to the −10°C isotherm of the late twentieth-century mean surface air temperature, such that positive trends prevail in winter over large regions of Eurasia and North America. Redistributions of snowfall throughout the entire snow season are projected to occur—even in locations where there is little change in annual snowfall. Changes in the fraction of precipitation falling as snow contribute to decreases in snowfall across most Northern Hemisphere regions, while changes in total precipitation typically contribute to increases in snowfall. A signal-to-noise analysis reveals that the projected changes in snowfall, based on the RCP4.5 scenario, are likely to become apparent during the twenty-first century for most locations in the Northern Hemisphere. The snowfall signal emerges more slowly than the temperature signal, suggesting that changes in snowfall are not likely to be early indicators of regional climate change.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Sven Kunisch ◽  
Markus Menz ◽  
David Collis

Abstract The corporate headquarters (CHQ) of the multi-business enterprise, which emerged as the dominant organizational form for the conduct of business in the twentieth century, has attracted considerable scholarly attention. As the business environment undergoes a fundamental transition in the twenty-first century, we believe that understanding the evolving role of the CHQ from an organization design perspective will offer unique insights into the nature of business activity in the future. The purpose of this article, in keeping with the theme of the Journal of Organization Design Special Collection, is thus to invigorate research into the CHQ. We begin by explicating four canonical questions related to the design of the CHQ. We then survey fundamental changes in the business environment occurring in the twenty-first century, and discuss their potential implications for CHQ design. When suitable here we also refer to the contributions published in our Special Collection. Finally, we put forward recommendations for advancements and new directions for future research to foster a deeper and broader understanding of the topic. We believe that we are on the cusp of a change in the CHQ as radical as that which saw its initial emergence in the late nineteenth/early twentieth century. Exactly what form that change will take remains for practitioners and researchers to inform.


Author(s):  
Shakoor Ahmad Wani

Since the early 2000, Balochistan is yet again embroiled in a cobweb of violence after a hiatus of more than two decades. The Baloch nationalist militancy began to reinvigorate after the seizure of power by General Pervez Musharraf in 1999. Musharraf marginalised the moderate Baloch nationalists and repressed dissident voices. The differences over power and resource sharing escalated quickly into a full-blown armed struggle once Musharraf used indiscriminate force to subdue opposition against his regime. This article examines the proximate and long-term structural factors that led to the resurgence of armed militancy at the turn of the twenty-first century. It analyses the new drivers and dynamics of the present conflict that make it more virulent and lend it a distinctive character.


2013 ◽  
Vol 138 (1) ◽  
pp. 129-174 ◽  
Author(s):  
Matthew Pritchard

AbstractThis article examines a range of writings on the status of musical interpretation in Austria and Germany during the early decades of the twentieth century, and argues their relevance to current debates. While the division outlined by recent research between popular-critical hermeneutics and analytical ‘energetics’ at this time remains important, hitherto neglected contemporary reflections by Paul Bekker and Kurt Westphal demonstrate that the success of energetics was not due to any straightforward intellectual victory. Rather, the images of force and motion promoted by 1920s analysis were carried by historical currents in the philosophy, educational theory and arts of the time, revealing a culturally situated source for twenty-first-century analysis's preoccupations with motion and embodiment. The cultural relativization of such images may serve as a retrospective counteraction to the analytical rationalizing processes that culminated specifically in Heinrich Schenker's later work, and more generally in the privileging of graphic and notational imagery over poetic paraphrase.


2021 ◽  
Vol 165 (3-4) ◽  
Author(s):  
Tao Yamamoto ◽  
So Kazama ◽  
Yoshiya Touge ◽  
Hayata Yanagihara ◽  
Tsuyoshi Tada ◽  
...  

AbstractThis study aimed to evaluate the impact of climate change on flood damage and the effects of mitigation measures and combinations of multiple adaptation measures in reducing flood damage. The inundation depth was calculated using a two-dimensional unsteady flow model. The flood damage cost was estimated from the unit evaluation value set for each land use and prefectures and the calculated inundation depth distribution. To estimate the flood damage in the near future and the late twenty-first century, five global climate models were used. These models provided daily precipitation, and the change of the extreme precipitation was calculated. In addition to the assessment of the impacts of climate change, certain adaptation measures (land-use control, piloti building, and improvement of flood control level) were discussed, and their effects on flood damage cost reduction were evaluated. In the case of the representative concentration pathway (RCP) 8.5 scenario, the damage cost in the late twenty-first century will increase to 57% of that in the late twentieth century. However, if mitigation measures were to be undertaken according to RCP2.6 standards, the increase of the flood damage cost will stop, and the increase of the flood damage cost will be 28% of that in the late twentieth century. By implementing adaptation measures in combination rather than individually, it is possible to keep the damage cost in the future period even below that in the late twentieth century. By implementing both mitigation and adaptation measures, it is possible to reduce the flood damage cost in the late twenty-first century to 69% of that in the late twentieth century.


Sign in / Sign up

Export Citation Format

Share Document