scholarly journals Impact of Atmosphere and Land Surface Initial Conditions on Seasonal Forecasts of Global Surface Temperature

2014 ◽  
Vol 27 (24) ◽  
pp. 9253-9271 ◽  
Author(s):  
Stefano Materia ◽  
Andrea Borrelli ◽  
Alessio Bellucci ◽  
Andrea Alessandri ◽  
Pierluigi Di Pietro ◽  
...  

Abstract The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, increasing the model predictive skill in the ocean. In fact, in regions characterized by strong air–sea coupling, the atmosphere initial condition affects forecast skill for several months. In particular, the ENSO region, eastern tropical Atlantic, and North Pacific benefit significantly from the atmosphere initialization. On the mainland, the effect of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects forecast skill in the following seasons. Winter forecasts in the high-latitude plains benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region and central Asia. However, the initialization strategy based on the full value technique may not be the best choice for land surface, since soil moisture is a strongly model-dependent variable: in fact, initialization through land surface reanalysis does not systematically guarantee a skill improvement. Nonetheless, using a different initialization strategy for land, as opposed to atmosphere and ocean, may generate inconsistencies. Overall, the introduction of a realistic initialization for land and atmosphere substantially increases skill and accuracy. However, further developments in the procedure for land surface initialization are required for more accurate seasonal forecasts.

Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Aymeric Bocher ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
...  

LDAS-Monde, an offline land data assimilation system with global capacity, is applied over the CONtiguous US (CONUS) domain to enhance monitoring accuracy for water and energy states and fluxes. LDAS-Monde ingests satellite-derived Surface Soil Moisture (SSM) and Leaf Area Index (LAI) estimates to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) Land Surface Model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (CTRIP) continental hydrological system (ISBA-CTRIP). LDAS-Monde is forced by the ERA-5 atmospheric reanalysis from the European Center For Medium Range Weather Forecast (ECMWF) from 2010 to 2016 leading to a 7-yr, quarter degree spatial resolution offline reanalysis of Land Surface Variables (LSVs) over CONUS. The impact of assimilating LAI and SSM into LDAS-Monde is assessed over North America, by comparison to satellite-driven model estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project, and upscaled ground-based observations of gross primary productivity from the FLUXCOM project. Also, taking advantage of the relatively dense data networks over CONUS, we also evaluate the impact of the assimilation against in-situ measurements of soil moisture from the USCRN network (US Climate Reference Network) are used in the evaluation, together with river discharges from the United States Geophysical Survey (USGS) and the Global Runoff Data Centre (GRDC). Those data sets highlight the added value of assimilating satellite derived observations compared to an open-loop simulation (i.e. no assimilation). It is shown that LDAS-Monde has the ability not only to monitor land surface variables but also to forecast them, by providing improved initial conditions which impacts persist through time. LDAS-Monde reanalysis has a potential to be used to monitor extreme events like agricultural drought, also. Finally, limitations related to LDAS-Monde and current satellite-derived observations are exposed as well as several insights on how to use alternative datasets to analyze soil moisture and vegetation state.


Author(s):  
Clément Albergel ◽  
Emanuel Dutra ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Simon Munier ◽  
...  

This study aims to assess the potential of the LDAS-Monde a land data assimilation system developed by Météo-France to monitor the impact of the 2018 summer heatwave over western Europe vegetation state. The LDAS-Monde is forced by the ECMWF’s (i) ERA5 reanalysis, and (ii) the Integrated Forecasting System High Resolution operational analysis (IFS-HRES), used in conjunction with the assimilation of Copernicus Global Land Service (CGLS) satellite derived products, namely the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI). Analysis of long time series of satellite derived CGLS LAI (2000-2018) and SSM (2008-2018) highlights marked negative anomalies for July 2018 affecting large areas of North Western Europe and reflects the impact of the heatwave. Such large anomalies spreading over a large part of the considered domain have never been observed in the LAI product over this 18-yr period. The LDAS-Monde land surface reanalyses were produced at spatial resolutions of 0.25°x0.25° (January 2008 to October 2018) and 0.10°x0.10° (April 2016 to December 2018). Both configuration of the LDAS-Monde forced by either ERA5 or HRES capture well the vegetation state in general and for this specific event, with HRES configuration exhibiting better monitoring skills than ERA5 configuration. The consistency of ERA5 and IFS HRES driven simulations over the common period (April 2016 to October 2018) allowed to disentangle and appreciate the origin of improvements observed between the ERA5 and HRES. Another experiment, down-scaling ERA5 to HRES spatial resolutions, was performed. Results suggest that land surface spatial resolution is key (e.g. associated to a better representation of the land cover, topography) and using HRES forcing still enhance the skill. While there are advantages in using HRES, there is added value in down-scaling ERA5, which can provide consistent, long term, high resolution land reanalysis. If the improvement from LDAS-Monde analysis on control variables (soil moisture from layers 2 to 8 of the model representing the first meter of soil and LAI) from the assimilation of SSM and LAI was expected, other model variables benefit from the assimilation through biophysical processes and feedbacks in the model. Finally, we also found added value of initializing 8-day land surface HRES driven forecasts from LDAS-Monde analysis when compared with model only initial conditions.


2010 ◽  
Vol 138 (7) ◽  
pp. 2481-2498 ◽  
Author(s):  
Celeste Saulo ◽  
Lorena Ferreira ◽  
Julia Nogués-Paegle ◽  
Marcelo Seluchi ◽  
Juan Ruiz

Abstract The impact of changes in soil moisture in subtropical Argentina in rainfall distribution and low-level circulation is studied with a state-of-the-art regional model in a downscaling mode, with different scenarios of soil moisture for a 10-day period. The selected case (starting 29 January 2003) was characterized by a northwestern Argentina low event associated with well-defined low-level northerly flow that extended east of the Andes over subtropical latitudes. Four tests were conducted at 40-km horizontal resolution with 31 sigma levels, decreasing and increasing the soil moisture initial condition by 50% over the entire domain, and imposing a 50% reduction over northwest Argentina and 50% increase over southeast South America. A control run with NCEP/Global Data Assimilation System (GDAS) initial conditions was used to assess the impact of the different soil moisture configurations. It was found that land surface interactions are stronger when soil moisture is decreased, with a coherent reduction of precipitation over southern South America. Enhanced northerly winds result from an increase in the zonal gradient of pressure at low levels. In contrast, when soil moisture is increased, smaller circulation changes are found, although there appears to be a local feedback effect between the land and precipitation. The combined effects of changes in the circulation and in local stratification induced by soil wetness modifications, through variations in evaporation and Convective Available Potential Energy (CAPE), are in agreement with what has been found by other studies, resulting in coherent modifications of precipitation when variations of CAPE and moisture flux convergence mutually reinforce.


2012 ◽  
Vol 140 (4) ◽  
pp. 1326-1346 ◽  
Author(s):  
Mirta Patarčić ◽  
Čedo Branković

Various measures of forecast quality are analyzed for 2-m temperature seasonal forecasts over Europe from global and regional model ensembles for winter and summer seasons during the period 1991 to 2001. The 50-km Regional Climate Model (RegCM3) is used to dynamically downscale nine-member ensembles of ECMWF global experimental seasonal forecasts. Three sets of RegCM3 experiments with different soil moisture initializations are performed: the RegCM3 default initial soil moisture, initial soil moisture taken from ECMWF seasonal forecasts, and initial soil moisture obtained from RegCM3 ECMWF interim Re-Analysis (ERA-Interim)-driven integrations (RegCM3 climatology). Both deterministic and probabilistic skill metrics are estimated. The better-resolved spatial scales in near-surface temperature by RegCM3 do not necessarily lead to the improved regional model skill in the regions where systematic errors are large. The impact of initial soil moisture on RegCM3 forecast skill is seen in summer in the southern part of the integration domain. When regional model soil moisture was initialized from ECMWF seasonal forecasts, systematic errors were reduced and deterministic skill was enhanced relative to the other RegCM3 experiments. The Brier skill score for rare cold anomalies in this experiment is comparable to that of the global model, whereas in other experiments it is significantly smaller than in global model. There is no major impact of soil moisture initialization on forecast skill in winter. However, some significant improvements in RegCM3 probabilistic skill scores for positive anomalies in winter are found in the central part of the domain where RegCM3 systematic errors are smaller than in global model.


2020 ◽  
Vol 24 (9) ◽  
pp. 4291-4316 ◽  
Author(s):  
Clément Albergel ◽  
Yongjun Zheng ◽  
Bertrand Bonan ◽  
Emanuel Dutra ◽  
Nemesio Rodríguez-Fernández ◽  
...  

Abstract. LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states. Firstly, LDAS-Monde is run globally at 0.25∘ spatial resolution over 2010–2018. It is forced by the state-of-the-art ERA5 reanalysis (LDAS_ERA5) from the European Centre for Medium Range Weather Forecasts (ECMWF). The behaviour of the assimilation system is evaluated by comparing the analysis with the assimilated observations. Then the land surface variables (LSVs) are validated with independent satellite datasets of evapotranspiration, gross primary production, sun-induced fluorescence and snow cover. Furthermore, in situ measurements of SSM, evapotranspiration and river discharge are employed for the validation. Secondly, the global analysis is used to (i) detect regions exposed to extreme weather such as droughts and heatwave events and (ii) address specific monitoring and forecasting requirements of LSVs for those regions. This is performed by computing anomalies of the land surface states. They display strong negative values for LAI and SSM in 2018 for two regions: north-western Europe and the Murray–Darling basin in south-eastern Australia. For those regions, LDAS-Monde is forced with the ECMWF Integrated Forecasting System (IFS) high-resolution operational analysis (LDAS_HRES, 0.10∘ spatial resolution) over 2017–2018. Monitoring capacities are studied by comparing open-loop and analysis experiments, again against the assimilated observations. Forecasting abilities are assessed by initializing 4 and 8 d LDAS_HRES forecasts of the LSVs with the LDAS_HRES assimilation run compared to the open-loop experiment. The positive impact of initialization from an analysis in forecast mode is particularly visible for LAI that evolves at a slower pace than SSM and is more sensitive to initial conditions than to atmospheric forcing, even at an 8 d lead time. This highlights the impact of initial conditions on LSV forecasts and the value of jointly analysing soil moisture and vegetation states.


2021 ◽  
Author(s):  
Luis Samaniego ◽  
Stephan Thober ◽  
Matthias Kelbling ◽  
Robert Schweppe ◽  
Oldrich Rakovec ◽  
...  

<p>The Copernicus Climate Change Service aims at facilitating the emergence of a downstream market of climate services with the ultimate goal of supporting the development of a climate-smart society. Central to this vision is the free and unrestricted distribution of high-quality climate data through the Climate Data Store [1], with seasonal meteorological predictions among them. Within this unique and challenging framework, ULYSSES [2] will provide the first "seamless'' multi-model hydrological seasonal prediction system, with a global coverage at a spatial resolution of 0.1° The ULYSSES modeling chain is based on the successfully tested EDgE proof of concept [3] using four state-of-the-art hydrological models (Jules, HTESSEL, mHM, and PCR-GLOBWB). A unique feature of this production chain consists of using the same land surface datasets (e.g. DEM, soil properties) with identical spatio-temporal resolutions and forecast inputs for all HMs, and the same river routing scheme (i.e., the multi-scale routing model mRM).</p><p>The initial conditions of the production chain will be based on ERA5-Land dataset and the seasonal forecasts will be driven by a 25-member ensemble generated by the ECMWF-SEAS5 model. ULYSSES aims at generating six essential hydrological variables: snow-water equivalent, snowmelt, evapotranspiration, soil moisture, total runoff, and streamflow with a lead-time of up to six months.  The seasonal forecast was verified at 250+ gauges distributred in all continents during the hind-casting period from 1993 to 2019. The operational forecasting period —in testing phase— started in January 2021 and be extended through until July 2021.  The first operational ULYSSES forecast will be made available by the 10th of each month starting in January 2021.</p><p>All input data sets (ERA5-Land), seasonal forecasts (SEAS5) and ULYSSES outputs will be made available in the Copernicus Climate Data Store [1] and will be open access. We aim to engage institutions and researchers around the world that are willing to evaluate the forecasts model performance, with the aim of improving the system in the future. In this talk, the modelling chain concept, model setup and verification of initial results will be presented.</p><ul><li>[1] https://cds.climate.copernicus.eu</li> <li>[2] https://www.ufz.de/ulysses</li> <li>[3] https://doi.org/10.1175/BAMS-D-17-0274.1</li> </ul>


2012 ◽  
Vol 13 (2) ◽  
pp. 463-482 ◽  
Author(s):  
Jin-Ho Yoon ◽  
Kingtse Mo ◽  
Eric F. Wood

Abstract A simple method was developed to forecast 3- and 6-month standardized precipitation indices (SPIs) for the prediction of meteorological drought over the contiguous United States based on precipitation seasonal forecasts from the NCEP Climate Forecast System (CFS). Before predicting SPI, the precipitation (P) forecasts from the coarse-resolution CFS global model were bias corrected and downscaled to a regional grid of 50 km. The downscaled CFS P forecasts, out to 9 months, were appended to the P analyses to form an extended P dataset. The SPIs were calculated from this new time series. Five downscaling methods were tested: 1) bilinear interpolation; 2) a bias correction and spatial downscaling (BCSD) method based on the probability distribution functions; 3) a conditional probability estimation approach using the mean P ensemble forecasts developed by J. Schaake, 4) a Bayesian approach that bias corrects and downscales P using all ensemble forecast members, as developed by the Princeton University group; and 5) multimethod ensemble as the equally weighted mean of the BCSD, Schaake, and Bayesian forecasts. For initial conditions from April to May, statistical downscaling methods were compared with dynamic downscaling based on the NCEP regional spectral model and forecasts from a high-resolution CFS T382 model. The skill is regionally and seasonally dependent. Overall, the 6-month SPI is skillful out to 3–4 months. For the first 3-month lead times, forecast skill comes from the P analyses prior to the forecast time. After 3 months, the multimethod ensemble has small advantages, but forecast skill may be too low to be useful in practice.


2013 ◽  
Vol 13 (11) ◽  
pp. 29137-29201 ◽  
Author(s):  
B. P. Guillod ◽  
B. Orlowsky ◽  
D. Miralles ◽  
A. J. Teuling ◽  
P. Blanken ◽  
...  

Abstract. The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface turbulent heat fluxes, as assessed via the Evaporative Fraction, EF, i.e. the ratio of latent heat to the sum of latent and sensible heat, in particular under convective conditions. Our study investigates the poorly understood link between EF and precipitation by investigating the impact of before-noon EF on the frequency of afternoon precipitation over the contiguous US, using a statistical analysis of the relationship between multiple datasets of EF and precipitation. We analyze remote sensing data products (EF from GLEAM, Global Land Evaporation: the Amsterdam Methodology, based on satellite observations; and radar precipitation from NEXRAD, the NEXt generation weather RADar system), FLUXNET station data, and the North American Regional Reanalysis (NARR). While most datasets agree on the existence of regions of positive relationship between between EF and precipitation in the Eastern and Southwestern US, observation-based estimates (GLEAM, NEXRAD and to some extent FLUXNET) also indicate a strong relationship in the Central US which is not found in NARR. Investigating these differences, we find that much of these relationships can be explained by precipitation persistence alone, with ambiguous results on the additional role of EF in causing afternoon precipitation. Regional analyses reveal contrasting mechanisms over different regions. Over the Eastern US, our analyses suggest that the apparent EF-precipitation coupling takes place on a short day-to-day time scale and is either atmospherically controlled (from precipitation persistence and potential evaporation) or driven by vegetation interception and subsequent re-evaporation (rather than soil moisture and related plant transpiration/bare soil evaporation), in line with the high forest cover and the wet regime of that region. Over the Central and Southwestern US, the impact of EF on convection triggering is additionally linked to soil moisture variations, owing to the soil moisture–limited climate regime.


2003 ◽  
Vol 10 (3) ◽  
pp. 211-232 ◽  
Author(s):  
T. J. Reichler ◽  
J. O. Roads

Abstract. The importance of initial state and boundary forcing for atmospheric predictability is explored on global to regional spatial scales and on daily to seasonal time scales. A general circulation model is used to conduct predictability experiments with different combinations of initial and boundary conditions. The experiments are verified under perfect model assumptions as well as against observational data. From initial conditions alone, there is significant instantaneous forecast skill out to 2 months. Different initial conditions show different predictability using the same kind of boundary forcing. Even on seasonal time scales, using observed atmospheric initial conditions leads to a substantial increase in overall skill, especially during periods with weak tropical forcing. The impact of boundary forcing on predictability is detectable after 10 days and leads to measurable instantaneous forecast skill at very long lead times. Over the Northern Hemisphere, it takes roughly 4 weeks for boundary conditions to reach the same effect on predictability as initial conditions. During events with strong tropical forcing, these time scales are somewhat shorter. Over the Southern Hemisphere, there is a strongly enhanced influence of initial conditions during summer. We conclude that the long term memory of initial conditions is important for seasonal forecasting.


2016 ◽  
Vol 17 (2) ◽  
pp. 517-540 ◽  
Author(s):  
Joseph A. Santanello ◽  
Sujay V. Kumar ◽  
Christa D. Peters-Lidard ◽  
Patricia M. Lawston

Abstract Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASA’s Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land–atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS–WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spinup can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux–PBL–ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.


Sign in / Sign up

Export Citation Format

Share Document