scholarly journals Projected Changes in Western U.S. Large-Scale Summer Synoptic Circulations and Variability in CMIP5 Models

2016 ◽  
Vol 29 (16) ◽  
pp. 5965-5978 ◽  
Author(s):  
Matthew C. Brewer ◽  
Clifford F. Mass

Abstract Large-scale synoptic circulations have a profound effect on western U.S. summer weather and climate. Heat waves, water availability, the distribution of monsoonal moisture, fire-weather conditions, and other phenomena are impacted by the position and amplitude of large-scale synoptic circulations. Furthermore, regional weather is modulated by the interactions of the large-scale flow with terrain and land–water contrasts. It is therefore crucial to understand projected changes in large-scale circulations and their variability under anthropogenic global warming. Although recent research has examined changes in the jet stream, storm tracks, and synoptic disturbances over the Northern Hemisphere under global warming, most papers have focused on the cold season. In contrast, this work analyzes the projected trends in the spatial distribution and amplitude of large-scale synoptic disturbances over the western United States and eastern Pacific during July and August. It is shown that CMIP5 models project weaker mean midtropospheric gradients in geopotential height as well as attenuated temporal variability in geopotential height, temperature, vorticity, vertical motion, and sea level pressure over this region. Most models suggest reduced frequency of troughs and increased frequency of ridges over the western United States. These changes in the variability of synoptic disturbances have substantial implications for future regional weather and climate.

2019 ◽  
Vol 58 (4) ◽  
pp. 695-715 ◽  
Author(s):  
Xiaoqin Jing ◽  
Bart Geerts ◽  
Yonggang Wang ◽  
Changhai Liu

AbstractTwo high-resolution (4 km) regional climate simulations over a 10-yr period are conducted to study the changes in wintertime precipitation distribution across mountain ranges in the interior western United States (IWUS) in a warming climate. One simulation represents the current climate, and another represents an ~2050 climate using a pseudo–global warming approach. The climate perturbations are derived from the ensemble mean of 15 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). These simulations provide an estimate of average changes in wintertime orographic precipitation enhancement and finescale distribution across mountain ranges. The variability in these changes among CMIP5 models is quantified using statistical downscaling relations between orographic precipitation distribution and upstream conditions, developed in Part I. The CMIP5 guidance indicates a robust warming signal (~2 K) over the IWUS by ~2050 but minor changes in relative humidity and cloud-base height. The IWUS simulations reveal a widespread increase in precipitation on account of higher precipitation rates during winter storms in this warmer climate. This precipitation increase is most significant over the mountains rather than on the surrounding plains. The increase in precipitation rate is largely due to an increase in low-level cross-mountain moisture transport. The application of the statistical relations indicates that individual CMIP5 models disagree about the magnitude and distribution of orographic precipitation change in the IWUS, although most agree with the ensemble-mean-predicted orographic precipitation increase.


2017 ◽  
Vol 18 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Edwin Sumargo ◽  
Daniel R. Cayan

Abstract This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.


2014 ◽  
Vol 23 (2) ◽  
pp. 143-148 ◽  
Author(s):  
J. Daniel Oppenheimer ◽  
Stacy K. Beaugh ◽  
Julie A. Knudson ◽  
Peter Mueller ◽  
Nikki Grant-Hoffman ◽  
...  

2010 ◽  
Vol 23 (6) ◽  
pp. 1354-1373 ◽  
Author(s):  
Jinhua Yu ◽  
Yuqing Wang ◽  
Kevin Hamilton

Abstract This paper reports on an analysis of the tropical cyclone (TC) potential intensity (PI) and its control parameters in transient global warming simulations. Specifically, the TC PI is calculated for phase 3 of the Coupled Model Intercomparison Project (CMIP3) integrations during the first 70 yr of a transient run forced by a 1% yr−1 CO2 increase. The linear trend over the period is used to project a 70-yr change in relevant model parameters. The results for a 15-model ensemble-mean climate projection show that the thermodynamic potential intensity (THPI) increases on average by 1.0% to ∼3.1% over various TC basins, which is mainly attributed to changes in the disequilibrium in enthalpy between the ocean and atmosphere in the transient response to increasing CO2 concentrations. This modest projected increase in THPI is consistent with that found in other recent studies. In this paper the effects of evolving large-scale dynamical factors on the projected TC PI are also quantified, using an empirical formation that takes into account the effects of vertical shear and translational speed based on a statistical analysis of present-day observations. Including the dynamical efficiency in the formulation of PI leads to larger projected changes in PI relative to that obtained using just THPI in some basins and smaller projected changes in others. The inclusion of the dynamical efficiency has the largest relative effect in the main development region (MDR) of the North Atlantic, where it leads to a 50% reduction in the projected PI change. Results are also presented for the basin-averaged changes in PI for the climate projections from each of the 15 individual models. There is considerable variation among the results for individual model projections, and for some models the projected increase in PI in the eastern Pacific and south Indian Ocean regions exceeds 10%.


2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


2020 ◽  
Vol 21 (12) ◽  
pp. 2907-2921
Author(s):  
Allison E. Goodwell

AbstractThe spatial and temporal ordering of precipitation occurrence impacts ecosystems, streamflow, and water availability. For example, both large-scale climate patterns and local landscapes drive weather events, and the typical speeds and directions of these events moving across a basin dictate the timing of flows at its outlet. We address the predictability of precipitation occurrence at a given location, based on the knowledge of past precipitation at surrounding locations. We identify “dominant directions of precipitation influence” across the continental United States based on a gridded daily dataset. Specifically, we apply information theory–based measures that characterize dominant directions and strengths of spatial and temporal precipitation dependencies. On a national average, this dominant direction agrees with the prevalent direction of weather movement from west to east across the country, but regional differences reflect topographic divides, precipitation gradients, and different climatic drivers of precipitation. Trends in these information relationships and their correlations with climate indices over the past 70 years also show seasonal and spatial divides. This study expands upon a framework of information-based predictability to answer questions about spatial connectivity in addition to temporal persistence. The methods presented here are generally useful to understand many aspects of weather and climate variability.


2009 ◽  
Vol 24 (6) ◽  
pp. 1625-1643 ◽  
Author(s):  
Heather Dawn Reeves ◽  
David J. Stensrud

Abstract Valley cold pools (VCPs), which are trapped, cold layers of air at the bottoms of basins or valleys, pose a significant problem for forecasters because they can lead to several forms of difficult-to-forecast and hazardous weather such as fog, freezing rain, or poor air quality. Numerical models have historically failed to routinely provide accurate guidance on the formation and demise of VCPs, making the forecast problem more challenging. In some case studies of persistent wintertime VCPs, there is a connection between the movement of upper-level waves and the timing of VCP formation and decay. Herein, a 3-yr climatology of persistent wintertime VCPs for five valleys and basins in the western United States is performed to see how often VCP formation and decay coincides with synoptic-scale (∼200–2000 km) wave motions. Valley cold pools are found to form most frequently as an upper-level ridge approaches the western United States and in response to strong midlevel warming. The VCPs usually last as long as the ridge is over the area and usually only end when a trough, and its associated midlevel cooling, move over the western United States. In fact, VCP strength appears to be almost entirely dictated by midlevel temperature changes, which suggests large-scale forcing is dominant for this type of VCP most of the time.


2011 ◽  
Vol 20 (8) ◽  
pp. 982 ◽  
Author(s):  
Mary Ellen Miller ◽  
Lee H. MacDonald ◽  
Peter R. Robichaud ◽  
William J. Elliot

Many forests and their associated water resources are at increasing risk from large and severe wildfires due to high fuel accumulations and climate change. Extensive fuel treatments are being proposed, but it is not clear where such treatments should be focussed. The goals of this project were to: (1) predict potential post-fire erosion rates for forests and shrublands in the western United States to help prioritise fuel treatments; and (2) assess model sensitivity and accuracy. Post-fire ground cover was predicted using historical fire weather data and the First Order Fire Effects Model. Parameter files from the Disturbed Water Erosion Prediction Project (WEPP) were combined with GeoWEPP to predict post-fire erosion at the hillslope scale. Predicted median annual erosion rates were 0.1–2 Mg ha–1 year–1 for most of the intermountain west, ~10–40 Mg ha–1 year–1 for wetter areas along the Pacific Coast and up to 100 Mg ha–1 year–1 for north-western California. Sensitivity analyses showed the predicted erosion rates were predominantly controlled by the amount of precipitation rather than surface cover. The limited validation dataset showed a reasonable correlation between predicted and measured erosion rates (R2 = 0.61), although predictions were much less than measured values. Our results demonstrate the feasibility of predicting post-fire erosion rates on a large scale. The validation and sensitivity analysis indicated that the predictions are most useful for prioritising fuel reduction treatments on a local rather than interregional scale, and they also helped identify model improvements and research needs.


Sign in / Sign up

Export Citation Format

Share Document