scholarly journals Interannual Shift of the Tropical Upper-Tropospheric Trough and Its Influence on Tropical Cyclone Formation over the Western North Pacific

2016 ◽  
Vol 29 (11) ◽  
pp. 4203-4211 ◽  
Author(s):  
Chao Wang ◽  
Liguang Wu

Abstract The east–west migration of the tropical upper-tropospheric trough (TUTT) on the interannual time scale and its influence on tropical cyclone (TC) formation over the western North Pacific (WNP) is investigated in this study. Climatologically, the TUTT can be identified from 100 to 400 hPa with a relative vorticity maximum between 150 and 200 hPa. In addition to the strong westerly vertical wind shear in the south flank of the TUTT, this study shows that the cold-core system is associated with low relative humidity and subsidence to the east of the trough axis. As a result, the TC formation is enhanced (suppressed) in the eastern portion of the WNP when the TUTT shifts eastward (westward) on the interannual time scale. The interannual TUTT shift is closely associated with the SST anomalies in the central and eastern tropical Pacific or ENSO phases. The warm (cold) phase of ENSO corresponds to the eastward (westward) shift of the TUTT. The physical factors found to be responsible for the influence of ENSO on TC formation can be associated with the east–west shift of the TUTT. It is shown that the interannual variations of TC formation in the eastern part of the WNP basin are closely associated with the east–west shift of the TUTT due to the associated environmental conditions that are generally not favorable for TC formation.

2013 ◽  
Vol 70 (4) ◽  
pp. 1023-1034 ◽  
Author(s):  
Liguang Wu ◽  
Huijun Zong ◽  
Jia Liang

Abstract Large-scale monsoon gyres and the involved tropical cyclone formation over the western North Pacific have been documented in previous studies. The aim of this study is to understand how monsoon gyres affect tropical cyclone formation. An observational study is conducted on monsoon gyres during the period 2000–10, with a focus on their structures and the associated tropical cyclone formation. A total of 37 monsoon gyres are identified in May–October during 2000–10, among which 31 monsoon gyres are accompanied with the formation of 42 tropical cyclones, accounting for 19.8% of the total tropical cyclone formation. Monsoon gyres are generally located on the poleward side of the composited monsoon trough with a peak occurrence in August–October. Extending about 1000 km outward from the center at lower levels, the cyclonic circulation of the composited monsoon gyre shrinks with height and is replaced with negative relative vorticity above 200 hPa. The maximum winds of the composited monsoon gyre appear 500–800 km away from the gyre center with a magnitude of 6–10 m s−1 at 850 hPa. In agreement with previous studies, the composited monsoon gyre shows enhanced southwesterly flow and convection on the south-southeastern side. Most of the tropical cyclones associated with monsoon gyres are found to form near the centers of monsoon gyres and the northeastern end of the enhanced southwesterly flows, accompanying relatively weak vertical wind shear.


2019 ◽  
Vol 32 (16) ◽  
pp. 5053-5067 ◽  
Author(s):  
Hyeonjae Lee ◽  
Chun-Sil Jin ◽  
Dong-Hyun Cha ◽  
Minkyu Lee ◽  
Dong-Kyou Lee ◽  
...  

AbstractFuture changes in tropical cyclone (TC) activity over the western North Pacific (WNP) are analyzed using four regional climate models (RCMs) within the Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia. All RCMs are forced by the HadGEM2-AO under the historical and representative concentration pathway (RCP) 8.5 scenarios, and are performed at about 50-km resolution over the CORDEX-East Asia domain. In the historical simulations (1980–2005), multi-RCM ensembles yield realistic climatology for TC tracks and genesis frequency during the TC season (June–November), although they show somewhat systematic biases in simulating TC activity. The future (2024–49) projections indicate an insignificant increase in the total number of TC genesis (+5%), but a significant increase in track density over East Asia coastal regions (+17%). The enhanced TC activity over the East Asia coastal regions is mainly related to vertical wind shear weakened by reduced meridional temperature gradient and increased sea surface temperature (SST) at midlatitudes. The future accumulated cyclone energy (ACE) of total TCs increases significantly (+19%) because individual TCs have a longer lifetime (+6.6%) and stronger maximum wind speed (+4.1%) compared to those in the historical run. In particular, the ACE of TCs passing through 25°N increases by 45.9% in the future climate, indicating that the destructiveness of TCs can be significantly enhanced in the midlatitudes despite the total number of TCs not changing greatly.


2012 ◽  
Vol 140 (4) ◽  
pp. 1067-1080 ◽  
Author(s):  
Bing Fu ◽  
Melinda S. Peng ◽  
Tim Li ◽  
Duane E. Stevens

Global daily reanalysis fields from the Navy Operational Global Atmospheric Prediction System (NOGAPS) are used to analyze Northern Hemisphere summertime (June–September) developing and nondeveloping disturbances for tropical cyclone (TC) formation from 2003 to 2008. This is Part II of the study focusing on the western North Pacific (WNP), following Part I for the North Atlantic (NATL) basin. Tropical cyclone genesis in the WNP shows different characteristics from that in the NATL in both large-scale environmental conditions and prestorm disturbances. A box difference index (BDI) is used to identify parameters in differentiating between the developing and nondeveloping disturbances. In order of importance, they are 1) 800-hPa maximum relative vorticity, 2) rain rate, 3) vertically averaged horizontal shear, 4) vertically averaged divergence, 5) 925–400-hPa water vapor content, 6) SST, and 7) translational speed. The study indicates that dynamic variables are more important in TC genesis in the WNP, while in Part I of the study the thermodynamic variables are identified as more important in the NATL. The characteristic differences between the WNP and the NATL are compared.


2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Kaijun Ren ◽  
Xiaoyong Li ◽  
Guangjie Wang

The relationship between ocean subsurface temperature and tropical cyclone (TC) over the western North Pacific (WNP) is studied based on the TC best-track data and global reanalysis data during the period of 1948–2012. Here the TC frequency (TCF), lifespan, and genesis position of TCs are analysed. A distinctive negative correlation between subsurface water temperature and TCF is observed, especially the TCF in the southeastern quadrant of the WNP (0–15°N, 150–180°E). According to the detrended subsurface temperature anomalies of the 125 m depth layer in the main TC genesis area (0–30°N, 100–180°E), we selected the subsurface cold and warm years. During the subsurface cold years, TCs tend to have a longer mean lifespan and a more southeastern genesis position than the subsurface warm years in general. To further investigate the causes of this characteristic, the TC genesis potential indexes (GPI) are used to analyse the contributions of environmental factors to TC activities. The results indicate that the negative correlation between subsurface water temperature and TCF is mainly caused by the variation of TCF in the southeastern quadrant of the WNP, where the oceanic and atmospheric environments are related to ocean subsurface conditions. Specifically, compared with the subsurface warm years, there are larger relative vorticity, higher relative humidity, smaller vertical wind shear, weaker net longwave radiation, and higher ocean mixed layer temperature in the southeastern quadrant during cold years, which are all favorable for genesis and development of TC.


Oceans ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 355-368
Author(s):  
Hironori Fudeyasu ◽  
Kohei Yoshida ◽  
Ryuji Yoshida

This study applied the database for Policy Decision making for Future climate change (d4PDF) and tropical cyclone (TC) genesis (TCG) environment factors to project future changes in the frequency and characteristics of TCs over the western North Pacific. We examined current and future TCG environmental conditions in terms of the contribution of five factors: shear line (SL), confluence region (CR), monsoon gyre, easterly wave (EW), and Rossby wave energy dispersion from a preexisting TC (PTC). Among summer and autumn TCs, the contributions of SL and EW to future TCG increased by about 4% and 1%, respectively, whereas those of CR and PTC decreased by the same amounts. In future climate projections, the average lifetime maximum intensity (LMI) of TCs associated with EW (EW-TCs) was significantly higher than those of TCs associated with other factors except PTC. At higher sea surface temperatures and wetter conditions, higher lower-tropospheric relative vorticity was related to increases in the development rate of EW-TCs. Findings of this study suggest that increases in the average LMI of all future TCs were caused by large contributions from the average LMI of future EW-TCs.


2018 ◽  
Vol 31 (3) ◽  
pp. 1015-1028 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Guojun Gu

Abstract As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14. Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.


2013 ◽  
Vol 26 (20) ◽  
pp. 7981-7991 ◽  
Author(s):  
Hye-Mi Kim ◽  
Myong-In Lee ◽  
Peter J. Webster ◽  
Dongmin Kim ◽  
Jin Ho Yoo

Abstract The relationship between El Niño–Southern Oscillation (ENSO) and tropical storm (TS) activity over the western North Pacific Ocean is examined for the period from 1981 to 2010. In El Niño years, TS genesis locations are generally shifted to the southeast relative to normal years and the passages of TSs tend to recurve to the northeast. TSs of greater duration and more intensity during an El Niño summer induce an increase of the accumulated tropical cyclone kinetic energy (ACE). Based on the strong relationship between the TS properties and ENSO, a probabilistic prediction for seasonal ACE is investigated using a hybrid dynamical–statistical model. A statistical relationship is developed between the observed ACE and large-scale variables taken from the ECMWF seasonal forecast system 4 hindcasts. The ACE correlates positively with the SST anomaly over the central to eastern Pacific and negatively with the vertical wind shear near the date line. The vertical wind shear anomalies over the central and western Pacific are selected as predictors based on sensitivity tests of ACE predictive skill. The hybrid model performs quite well in forecasting seasonal ACE with a correlation coefficient between the observed and predicted ACE at 0.80 over the 30-yr period. A relative operating characteristic analysis also indicates that the ensembles have significant probabilistic skill for both the above-normal and below-normal categories. By comparing the ACE prediction over the period from 2003 to 2011, the hybrid model appears more skillful than the forecast from the Tropical Storm Risk consortium.


Sign in / Sign up

Export Citation Format

Share Document